

ÍNDICE

VÁLVULAS	14	UNIÕES ROTATIVAS	108
Pneumáticas proporcionais	16		
Pneumáticas 0N/0FF	17	ELECTROVÁLVULAS E	116
Pneumáticas higiénicas	22		110
Eléctricas on/off e proporcionais	24	BOMBAS DE SOLENÓIDE	
Redutoras de pressão	25		
Reguladoras de caudal	27	Electroválvulas 2 Vias	118
Segurança	28	Electroválvulas 3 Vias	125
Borboleta	32	Electroválvulas Modulares	127
Macho esférico	35	Electroválvulas com Certificação Especial	128
Globo	42	Electroválvulas para Gás	130
Agulha	46	Outros Produtos	132
Cunha	47		
Descarga de caldeira	51		
Guilhotina	52	LIGAÇÕES FLEXÍVEIS	136
Retenção	55	LIGAÇOLS I LEXIVEIS	130
		Compensadores de Dilatação	138
ACTUADORES	62	Juntas Elásticas Antivibráticas	142
ACTUADURES	02	Tubos Flexíveis	143
Pneumáticos	64		
Eléctricos	68	MATERIAIS DE REVESTIMENTO	146
		E SELAGEM	
EQUIPAMENTOS DE CONTROLO	70		
		BOMBAS E AGITADORES	154
Electroválvulas de distribuição pneumática	72		
Fins de curso	73		
Posicionadores e conversores de sinal	74	ACESSÓRIOS INOX	156
Controlo e indicação de pressão e temperatura	77	ACESSORIOS IITOX	130
Transmissores e indicadores de pressão e temperatura	79		
Controlo de nível e fluxo	81	EQUIPAMENTOS PARA REDES	160
Contadores	87		
Contauores	or	DE INCÊNDIO	
PURGADORES	88	TABELAS AUXILIARES	168
FILTROS E VISORES	102		100
TILINUS E VISUNES	102		
Filtros	104		
Visores	107		

As válvulas são consideradas os elementos fundamentais no controlo de qualquer processo industrial. Têm como papel principal o comando do fluxo que circula numa tubagem ou circuito, permitindo o seu controlo manual ou automático, ON/OFF ou por regulação/modulação. As válvulas estão associadas a todos os tipos de fluídos, permitindo o controlo da pressão, caudal, temperatura, nível, volume, ou sentido do fluxo.

A escolha do tipo de válvula a aplicar, deverá ser feita em função de cada situação concreta e das suas características.

VÁLVULAS

PNFUMÁTICAS PROPORCIONAIS

VÁLVULA PNEUMÁTICA PROPORCIONAL TIPO GLOBO FIG. SBS

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Produtos Químicos e Água Material Corpo: CF8M

Material Vedação: EPDM / PTFE / PTFE COM

GRAFITE

Diâmetro: DN15 - DN65

Ligação: Roscada BSP F/F ou extremidades para

soldar SW

Actuação: Pneumática 3:15psi; 6:18psi; 6:30psi; 9:32psi Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C Pressão max.: 16Bar

OPCÕES

Posicionador Linear Pneumático ou Electropneumático Conversor Electro-pneumático Sensores Fim de Curso Volante de Abertura de Emergência

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de Controlo de Pressão ou Temperatura em Linhas de Vapor, Óleo Térmico e Água

Material Corpo: EN 1561 GJL-250 / EN-1563 GJS-

500-7 / ASTM A216 WCB / CF8M

Material Vedação: PEEK, Metal/Metal, estelitado

Diâmetro: DN15 - DN150

Ligação: Flangeada 2 e 3 Vias EN 1092-2 PN16 / EN1092-1 PN40 e ANSI B16.5 Classe 150# Actuação: Pneumática 3:15psi; 6:18psi; 6:30psi; 0:32psi; 2:0psi; 0:15psi; 6:18psi; 6:30psi; 0:32psi; 2:0psi; 0:15psi; 6:18psi; 6:30psi;

9:32psi; 3:9psi; 9:15psi

Normalmente Fechada ou Aberta, 3 vias

Misturadora ou Desviadora

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40°C a +300°C Pressão max.: 40Bar

OPÇÕES

Posicionador Linear Pneumático ou Electropneumático Conversor Electro-pneumático Sensores Fim de Curso Volante para abertura manual de emergência

VÁLVULA PNEUMÁTICA PROPORCIONAL SEDE INCLINADA FIG. FFF

PNEUMÁTICAS ON/OFF

VÁLVULA PNEUMÁTICA ON/OFF TIPO GLOBO FIG. GRS

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Óleo Térmico e Água

Material Corpo: EN 1561 GJL-250 / EN-1563 GJS-

500-7 / ASTM A216 WCB / CF8M

Material Vedação: PEEK, Metal/Metal, estelitado

Diâmetro: DN15 - DN150

Ligação: Flangeada 2 e 3 Vias EN 1092-2 PN16 / EN1092-1 PN40 e ANSI B16.5 Classe 150# Actuação: Pneumática ON/OFF 6 — 8 Bar Normalmente Fechada ou Aberta, 3 vias

Misturadora ou Desviadora

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40°C a +300°C Pressão max.: 40Bar

OPÇÕES

Conversor Electro-pneumático Sensores Fim de Curso Electroválvula de comando

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Óleo Térmico e Água

Material Corpo: EN 1561 GJL-250 / EN-1563 GJS-

500-7 / ASTM A216 WCB / CF8M

Material Actuador: Poliamida 66 com 30% de fibra

de vidro.

Material Vedação: PEEK, Metal/Metal, estelitado

Diâmetro: DN15 - DN80

Ligação: Flangeada 2 e 3 Vias EN 1092-2 PN16 / EN1092-1 PN40 e ANSI B16.5 Classe 150# Actuação: Pneumática 0N/0FF6-8 Bar Normalmente Fechada ou Aberta, 3 vias

Misturadora ou Desviadora

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40°C a +300°C Pressão máx.: 40Bar

OPÇÕES

Conversor Electro-pneumático Sensores Fim de Curso Electroválvula de comando

VÁLVULA PNEUMÁTICA ON/OFF TIPO GLOBO FIG. GRS/P

PNEUMÁTICAS ON/OFF

VÁLVULA PNEUMÁTICA ON/OFF ÂNGULO OBLÍQUO FIG. FFF

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Produtos Químicos e Água Material Corpo: CF8M

Material Vedação: EPDM / PTFE / PTFE COM

GRAFITE

Diâmetro: DN5 — DN65 Ligação: Roscada BSP F/F

Actuação: Pneumática ON/OFF 6 — 8 Bar Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C

 $Press\~{a}o\ max.: 40Bar(DN5:11); 16Bar(DN15:65);$

OPÇÕES

Sensores Fim de Curso Electroválvula de comando

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Produtos Químicos e Água Material Corpo: CF8M

Material Actuador: Poliamida 66 com 30% de fibra

de vidro

Material Vedação: EPDM / PTFE / PTFE COM

GRAFITE

Diâmetro: DN8 — DN65 Ligação: Roscada BSP F/F

Actuação: Pneumática ON/OFF 6 — 8 Bar Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C

Pressão máx.: 40Bar(DN8:11); 16Bar(DN15:65);

OPÇÕES

Sensores Fim de Curso Electroválvula de comando

VÁLVULA PNEUMÁTICA ON/OFF ÂNGULO OBLÍQUO FIG. FFF/P

VÁLVULA PNEUMÁTICA ON/OFF ÂNGULO RECTO FIG. IVS

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Produtos Químicos e Água Material Corpo: CF8M

Material Vedação: EPDM / PTFE / PTFE COM

GRAFITE

Diâmetro: DN8 - DN150

Ligação: Extremidades para soldar BW ou

Flangeada

Actuação: Pneumática ON/OFF 6 – 8 Bar

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C

Pressão máx.: 40Bar(DN8:11); 16Bar(DN15:50);

10Bar(DN65:100); 6Bar(DN125:150)

OPÇÕES

Sensores Fim de Curso Electroválvula de comando Ligações roscadas

Volante para abertura manual de emergência

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Produtos Químicos e Água Material Corpo: CF8M

Material Actuador: Poliamida 66 com 30% de fibra

de vidro

Material Vedação: EPDM / PTFE / PTFE COM

GRAFITE

Diâmetro: DN8 - DN150

Ligação: Extremidades para soldar BW ou

Flangeada

Actuação: Pneumática ON/OFF 6 - 8 Bar

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C

Pressão máx.: 40Bar(DN8:11); 16Bar(DN15:50);

10Bar(DN65:100); 6Bar(DN125:150)

OPÇÕES

Sensores Fim de Curso Electroválvula de comando Ligações roscadas

VÁLVULA PNEUMÁTICA ON/OFF ÂNGULO RECTO FIG. IVS/P

PNEUMÁTICAS ON/OFF

VÁLVULA PNEUMÁTICA ON/OFF ÂNGULO OBLÍQUO FIG. IVFL

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Produtos Químicos e Água Material Corpo: CF8M

Material Vedação: EPDM / PTFE / PTFE COM

GRAFITE

Diâmetro: DN8 - DN150

Ligação: Extremidades para soldar BW ou

Flangeada

Actuação: Pneumática ON/OFF 6 — 8 Bar

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C

Pressão máx.: 40Bar(DN8:11); 16Bar(DN15:50);

10Bar(DN65:100); 6Bar(DN125:150)

OPÇÕES

Sensores Fim de Curso Electroválvula de comando Ligações roscadas Volante para abertura manual de emergência

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de Vapor,

Produtos Químicos e Água Material Corpo: CF8M

Material Actuador: Poliamida 66 com 30% de fibra

le vidro

Material Vedação: EPDM / PTFE / PTFE COM

GRAFITE

Diâmetro: DN8 - DN150

Ligação: Extremidades para soldar BW ou

Flangeada

Actuação: Pneumática ON/OFF 6 - 8 Bar

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C

Pressão máx.: 40Bar(DN8:11); 16Bar(DN15:50);

10Bar(DN65:100); 6Bar(DN125:150)

OPÇÕES

Sensores Fim de Curso Electroválvula de comando Ligações roscadas

VÁLVULA PNEUMÁTICA ON/OFF ÂNGULO OBLÍQUO FIG. IVFL/P

VÁLVULA PNEUMÁTICA ON/OFF ÂNGULO RECTO FIG. IMS/O

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de Linhas de

Produtos Químicos e Água Material Corpo: CF8M Material Vedação: PTFE

Diâmetro: DN8

Ligação: Extremidades para soldar SW ou BW Actuação: Pneumática ON/OFF 6 – 8 Bar. Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +140°C Pressão máx.: 6Bar

OPÇÕES

Sensores Fim de Curso Electroválvula de comando Ângulo Oblíquo

CARACTERÍSTICAS TÉCNICAS

Válvula Automática (patenteada exclusivamente pela OMAL) que incorpora simultaneamente um sistema de Intercepção e de Controlo Simples e Duplo efeito, normalmente aberta ou normalmente fechada disponível em diâmetros de 3/8" a 2"

Material: Corpo em Latão Niquelado

Vedação: NBR/FKM/EPDM

Conexões NAMUR

Rosca GAS segundo UNI/ISO 7/1 Rp - DIN 2999

(rosca NPT sob pedido) Fluxo unidirecional

Posição de montagem: vertical, horizontal ou

oblíqua

Perdas de carga reduzidas

Possibilidade de indicação de posição através da instalação de fins de curso magnéticos externos Disponível em ATEX

CONDIÇÕES DE FUNCIONAMENTO

Temperatura:

-20 a 80 °C (NBR) -20 a 150 °C (FKM/EPDM) Alimentação: de 3 a 8 bar; máximo 10 bar

VÁLVULA PNEUMÁTICA AXIAL FIG. VIP

PNEUMÁTICAS HIGIÉNICAS

VÁLVULA PNEUMÁTICA PROPORCIONAL FIG. 1200 AR/AD

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de Controlo na indústria

alimentar, farmacêutica e outras

Material Corpo: Aço inox AISI316L-X2 Cr Ni Mo 1712 **PN10**

Material Vedação: FPM, VITON Diâmetro: DN15 - DN100

Ligação: Roscada DIN 11851, P/soldar, Clamp ou

Flangeada PN 10-16

Actuação: Pneumática 3:15psi; 6:18psi; 6:30psi 3 Vias Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -15°C a +160°C Pressão máx.: 10Bar

OPÇÕES

PN16

Posicionador Linear Pneumático ou Electropneumático Conversor Electro-pneumático Sensores Fim de Curso Volante para abertura manual de emergência

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de Controlo na indústria

alimentar, farmacêutica e outras

Material Corpo: Aço inox AISI316L-X2 Cr Ni Mo 1712

PN10

Material Vedação: FPM, VITON Diâmetro: DN15 - DN100

Ligação: Roscada DIN 11851, P/soldar, Clamp ou

Flangeada PN10-16

Actuação: Pneumática 3:15psi; 6:18psi; 6:30psi

Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -15°C a +160°C Pressão máx.: 10Bar

OPÇÕES

Posicionador Linear Pneumático ou Electropneumático Conversor Electro-pneumático Sensores Fim de Curso Volante para abertura manual de emergência

VÁLVULA PNEUMÁTICA PROPORCIONAL 3 VIAS

MISTURADORA FIG. 1400/1500 AR/AD

VÁLVULA PNEUMÁTICA ON/OFF FIG. 1300 AR/AD/DE

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de Controlo na indústria

alimentar, farmacêutica e outras

Material Corpo: Aço inox AISI316L-X2 Cr Ni Mo 1712

PN10

Material Vedação: FPM, VITON Diâmetro: DN15 — DN100

Ligação: Roscada DIN 11851, P/soldar, Clamp ou

Flangeada PN10-16

Actuação: Pneumática 5-6 Bar

Normalmente Fechada, Aberta ou Duplo Efeito

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -15°C a +160°C Pressão máx.: 10Bar

OPÇÕES

Sensores Fim de Curso Electroválvula de comando

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de Controlo na indústria alimentar, farmacêutica e outras

allineillai, iaililaceutica e outras

Material Corpo: Aço inox AISI316L-X2 Cr Ni Mo 1712 PN10

LINTO

Material Vedação: FPM, VITON Diâmetro: DN15 — DN100

Ligação: Roscada DIN 11851, P/ soldar, Clamp ou

Flangeada PN 10-16

Actuação: Pneumática 5-6 Bar

3 Vias Normalmente Fechada, Aberta ou Duplo

Efeito

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -15°C a +160°C Pressão máx.: 10Bar

OPÇÕES

Sensores Fim de Curso Electroválvula de comando

VÁLVULA PNEUMÁTICA ON/OFF 3 VIAS DESVIADORA FIG. 1800 AR/ AD/DE

CONFLOW

ELÉCTRICAS ON/OFF E PROPORCIONAIS

VÁLVULA ELÉCTRICA TIPO GLOBO FIG. SBS

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de Controlo de Pressão ou Temperatura em Linhas de Vapor, Óleo Térmico e Água.

Material Corpo: EN 1561 GJL-250 / EN-1563 GJS-

500-7 / ASTM A216 WCB / CF8M

Material Vedação: PEEK, Metal/Metal, estelitado

Diâmetro: DN15 - DN150

Ligação: Flangeada 2 e 3 Vias EN 1092-2 PN16 / EN1092-1 PN40 e ANSI B16.5 Classe 150# Alimentação Eléctrica: 24VAC/DC ou 230VAC

Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C Pressão max.: 40Bar

OPÇÕES

Comando on/off ou proporcional com sinal de controlo: 0..10V, 4..20mA, 2 ou 3 Pontos Válvula de 3 vias Misturadora ou Desviadora

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de Controlo de Pressão ou Temperatura em Linhas de Vapor, Óleo Térmico e Água.

Material Corpo: EN 1561 GJL-250 / EN-1563 GJS-

500-7 / ASTM A216 WCB / CF8M

Material Vedação: PEEK, Metal/Metal, Estelitado

Diâmetro: DN15 - DN150

Ligação: Flangeada 2 e 3 Vias EN 1092-2 PN16 / EN1092-1 PN40 e ANSI B16.5 Classe 150# Alimentação Eléctrica: 24VAC/DC ou 230VAC Normalmente Fechada ou Aberta

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40°C a +300°C Pressão max.: 20Bar

OPÇÕES

Comando on/off ou proporcional com sinal de controlo: 0..10V, 4..20mA, 2 ou 3 Pontos Válvula de 3 vias Misturadora ou Desviadora

VÁLVULA ELÉCTRICA TIPO GLOBO FIG. SBS COM FOLE

REDUTORAS DE PRESSÃO

VÁLVULA REDUTORA DE PRESSÃO FIG. BDV-25

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redução de Pressão em Sistemas de

Vapor, Ar e Gases

Material: Corpo em Aço Carbono 40.3

Diâmetro: 1/2" – 1"

Ligação: Rosca Fêmea BSP Vedação: Metal/Metal

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: 210 °C

Pressão Máx. Entrada: Vapor, ar e gases 19 Bar

Pressão Min. De Redução: 0,14 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redução de Pressão em Sistemas de

Vapor

Material: Corpo em Latão Diâmetro: 1/2" — 1"

Ligação: Rosca Fêmea BSp / NPT

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: 204 °C Pressão Máx. Entrada: Vapor 16 Pressão Min. De Redução: 0,5 Bar

VÁLVULA REDUTORA DE PRESSÃO FIG. RE2

REDUTORAS DE PRESSÃO

VÁLVULA REDUTORA DE PRESSÃO FIG. RP10

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redução de Pressão em Sistemas de

Vapor, Água, Ar e Gases

Material: Corpo em Aço Carbono C40 ou Aço Inox

AISI316

Diâmetro: 1/2" - 1"

Ligação: Rosca Fêmea BSp / Flange UNI/

DIN2238/29 PN25 Vedação: Metal/Metal

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: 210 °C

Pressão Máx. Entrada: Vapor, ar e gases 19 Bar –

Agua 5 Ba

Pressão Min. De Redução: 0,12 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redução de Pressão Sistemas de

Vapor, Água, Ar e Gases

Material: Corpo em Fundição G25 ou Aço Carbono

GSC25

Diâmetro: DN15 - DN100

Ligação: Flangeadas UNI2238 - DIN2501 PN16 e

PN40

Vedação: Metal/Metal

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: 220 °C

Pressão Máx. Entrada: Vapor, ar e gases 23 Bar -

Água 8 Bar

Pressão Min. De Redução: 0,2 Bar

VÁLVULA REDUTORA DE PRESSÃO FIG. RP13

CONFLOW

REGULADORAS DE CAUDAL

VÁLVULA REGULADORA CAUDAL **ESTÁTICA ROSCADA**

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linhas de Água Quente ou Fria, Sistemas de Arrefecimento, Ar Condicionado e

Outras

Material Corpo: Bronze

Material Obturador: Latão/PTFE Material Vedação: PTFE/Latão Diâmetro: DN15 - DN50 Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +130°C Pressão máx.: 25Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linhas de Água Quente ou Fria, Sistemas de arrefecimento, Ar condicionado e

Material Corpo: EN-GJL-250 JL 1040 Material Vedação: Aço Inox/PTFE Diâmetro: DN65 - DN300 Ligação: Flangeada PN16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +130°C Pressão máx.: 16Bar

VÁLVULA REGULADORA CAUDAL ESTÁTICA FLANGEADA

SEGURANÇA

VÁLVULA DE SEGURANÇA SÉRIE 1216

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas pressurizados de Vapor,

Gases e Líquidos

Material: Corpo Aço Inox CF3M, Interior em Aço

Inox

Diâmetro: 1/2" — 2" Ligação: Rosca BSP / NPT Vedação: Metal/Metal, Viton, PTFE

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20 a +350 °C / Criogénico até

-196°C

Pressão Nominal: PN40

Pressão Mínima de Disparo: 0,2 bar

OPÇÕES

Com ou sem alavanca Alavanca estanque Sensor de Fim de curso Revestimento 100% em ECTFE

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas pressurizados de Vapor,

Gases e Líquidos

Material: Corpo Aço Inox CF3M, Interior em Aço

lnox

Diâmetro: 1/2" – 2" Ligação: Rosca BSP / NPT Vedação: Metal/Metal, PTFE

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +350 °C / Criogénico até

-196°C

Pressão Nominal: : PN100, 250 e 400

Pressão de Disparo: Mín. 30 Bar, Max.: 300 Bar

OPÇÕES

Com ou sem alavanca Alavanca estanque Sensor de Fim de curso Revestimento 100% em ECTFE

VÁLVULA DE SEGURANÇA SÉRIE 1216HP

VÁLVULA DE SEGURANÇA SÉRIE 1216C

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas pressurizados de Vapor,

Gases e Líquidos

Material: Corpo Aço Inox CF3M, Interior em Aço

Inox

Diâmetro: 15 – 40 Ligação: Clamp / BSP Vedação: Viton, PTFE

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +350 °C / Criogénico até -196°

Pressão Nominal: : PN10 Pressão Mínima: 0,2 bar

OPÇÕES

Com ou sem alavanca Alavanca estanque Sensor de Fim de curso Revestimento 100% em ECTFE

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas pressurizados de Vapor,

Gases e Líquidos

Material: Corpo Aço Inox CF3M, Interior em Aço

nox

Diâmetro: 1/2" – 1" / DN15 - DN25

Ligação: Flangeadas

Vedação: Metal/Metal, Viton, PTFE

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +350 °C / Criogénico até -196° Pressão Nominal: : PN16, PN25, PN40, 150#,

300#

Pressão Mínima: 0,2 bar

OPÇÕES

Com ou sem alavanca Alavanca estanque Sensor de Fim de curso Revestimento 100% em ECTFE

VÁLVULA DE SEGURANÇA SÉRIE 1216B

SEGURANÇA

VÁLVULA DE SEGURANÇA SÉRIE 1400

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas pressurizados de Vapor,

Gases e Líquidos

Material: Corpo em Aço Carbono ou Aço Inox

Diâmetro: 1" - 12"

Ligação: Flangeadas ANSI150/300

600/900/1500/2500 Vedação: Metal/Metal

Corpo de entrada totalmente inox

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -196 a +555 °C Pressão Nominal: : ANSI150/300

600/900/1500/2500 Pressão Mínima: 0,2 bar

OPÇÕES

Com ou sem alavanca Alavanca estanque Vedação em Viton ou PTFE Fole interno de vedação Sensor de Fim de curso Camisa de Aquecimento Revestimento 100% em ECTFE

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas pressurizados de Vapor,

Gases e Líquidos

Material: Corpo em Fundição Nodular, Aço

Carbono ou Aço Inox Diâmetro: DN15 — DN400 Ligação: Flangeadas EN1092 Vedação: Metal/Metal

Corpo de entrada totalmente inox

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -28°C a + 455°C

Pressão Nominal: : PN16, PN25, PN40, PN63,

PN100

Pressão Mínima: 0,2 bar

OPÇÕES

Com ou sem alavanca Alavanca estanque Vedação em Viton ou PTFE Fole interno de vedação Sensor de Fim de curso Camisa de Aquecimento Revestimento 100% em ECTFE

VÁLVULA DE SEGURANÇA SÉRIE 1415

VÁLVULA DE SEGURANÇA SÉRIE 1400LP/1415LP

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas Baixa Pressão de Vapor,

Gases e Líquidos

Material: Corpo em Fundição Nodular, Aço

Carbono ou Aço Inox

Diâmetro: DN25 - DN400 / 1" - 12"

Ligação: Flangeadas PN16 a PN100 - ANSI 150#

a ANSI 2500#

Vedação: Metal/Metal / PTFE Corpo de entrada totalmente inox

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -28 a +455 °C

Pressão Nominal: : PN16 a PN100 - ANSI 150# a

ANSI 2500#

Pressão Serviço: 0,5mbar a 200mbar

OPÇÕES

Revestimento 100% em ECTFE

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas pressurizados de fluídos criogénicos, produtos químicos ou para ambientes e fluídos salinos.

Material: Corpo em Aço Duplex, Corpo e/ou interiores com recobrimento ECTFE

Diâmetro: DN15 - DN400 / 1" — 12"

Ligação: Roscada ou Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -196 a +400 °C Pressão Nominal: PN16 a PN400

VÁLVULAS DE SEGURANÇA ESPECIAIS

BORBOLETA

VÁLVULA DE BORBOLETA TIPO WAFER FIG. KV-3

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de aquecimento, ventilação, tratamentos e distribuição de água, indústria alimentar, química, têxtil e outras

Material Corpo: GG25 Material Disco: AISI316 Material Vedação: EPDM Diâmetro: DN25 — DN600

Ligação: Wafer Entre Flanges PN 10/16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +130°C

OPÇÕES

Fins de Curso Posicionador

Actuação: Manual com alavanca, com caixa desmultiplicadora, actuador pneumático ou

eléctrico

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de aquecimento, ventilação, tratamentos e distribuição de água, indústria alimentar, química, têxtil e outras

Material Corpo: GG25 Material Disco: AlSI316 Material Vedação: EPDM Diâmetro: DN25 — DN600

Ligação: Tipo LUG Entre Flanges PN10/16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +130°C

OPÇÕES

Fins de Curso Posicionador

Actuação: Manual com alavanca, com caixa desmultiplicadora, actuador pneumático ou eléctrico

VÁLVULA DE BORBOLETA TIPO LUG FIG. KV-4

VÁLVULA DE BORBOLETA TIPO LUG FIG. KV-10

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linhas de distribuição de gás

natural, LPG-LNG

Material Corpo: GGG40.3 Material Disco: GGG40.3 Material Vedação: NBR Diâmetro: DN25 – DN600 Ligação: Tipo LUG PN10/16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +110°C

Actuação: Manual com alavanca ou com caixa

desmultiplicadora

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de aquecimento, ventilação, tratamentos e distribuição de água, indústria alimentar, química, têxtil e outras.

Material Corpo: GGG40

Material Disco: GGG40 ou AlSI316 Material Vedação: EPDM/NBR

Diâmetro: Fig. 20 DN32 — DN300 / Fig.14 DN350

- DN700

Ligação: Wafer Entre Flanges PN10/16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: +130°C

OPÇÕES

Fins de Curso Posicionador Actuação: Manual com alavanca, com caixa desmultiplicadora, actuador pneumático ou eléctrico.

VÁLVULA DE BORBOLETA TIPO WAFER FIG. 14 / 20

BORBOLETA

VÁLVULA DE BORBOLETA TIPO WAFER FIG. SPO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Tratamento e distribuição de água, indústria alimentar, química, têxtil e outras

Material Corpo: GS500/7 Material Disco: AISI316

Material Vedação: PTFE com núcleo em EPDM

Diâmetro: DN40 - DN350

Ligação: Wafer Entre Flanges PN10

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +150°C Pressão Max.: 10Bar

Fins de Curso Posicionador Actuação: Manual com alavanca, com caixa desmultiplicadora, actuador pneumático ou eléctrico

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de aquecimento, ventilação, tratamentos e distribuição de água, indústria alimentar, química, têxtil e outras. Material Corpo: A216WCB ou ASTM A351 CF8M

Material Disco: ASTM A351 CF8M

Vedação: Metal/Metal Diâmetro: DN40 — DN1400

Ligação: Wafer Entre Flanges PN10/16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -30° a +350°C

OPÇÕES

Fins de Curso Posicionador Actuação: Manual com alavanca, com caixa desmultiplicadora, actuador pneumático ou eléctrico

VÁLVULA DE BORBOLETA TIPO WAFER VEDAÇÃO METAL/METAL

MACHO ESFÉRICO •

VÁLVULA DE MACHO ESFÉRICO 1 CORPO FIG. 2017P

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M

Material Vedação: PTFE Diâmetro: DN8 — DN50 Ligação: Roscada BSP

Actuação: Manual com alavanca

Corpo Polido

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão Máx.: 1000W0G (PN63)

OPÇÕES

Roscada NPT

Corpo em ASTM A216-WCB

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras.

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M Material Vedação: PTFE/RTFE Diâmetro: DN8 — DN80 Ligação: Roscada BSP

Actuação: Manual com alavanca

Sistema de bloqueio

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão Máx.: 1000W0G (PN63)

OPÇÕES

Roscada NPT

Corpo em ASTM A216-WCB

VÁLVULA DE MACHO ESFÉRICO 2 CORPOS FIG. 2006S

MACHO ESFÉRICO •

VÁLVULA DE MACHO ESFÉRICO 2 CORPOS COM BASE ISO 5211 FIG. 2009D

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M Material Vedação: PTFE/RTFE Diâmetro: DN8 — DN80 Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão max.: 1000W0G (PN63)

OPÇÕES

Roscada NPT
Corpo em ASTM A216-WCB
Posicionador
Fins de Curso
Actuação: Manual com alavanca, Actuador
pneumático, Actuador Eléctrico
Sistema de bloqueio

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M Material Vedação: PTFE/RTFE Diâmetro: DN8 — DN100 Ligação: Roscada BSP/BW Actuação: Manual com alavanca Sistema de bloqueio

Sistema de bioqueio

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 1000W0G (PN63)

OPÇÕES

Roscada NPT/SW Corpo em ASTM A216-WCB

VÁLVULA DE MACHO ESFÉRICO 3 CORPOS FIG. 2013

VÁLVULA DE MACHO ESFÉRICO 3 CORPOS COM BASE ISO 5211 FIG. 2013ND

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M Material Vedação: PTFE/RTFE Diâmetro: DN8 — DN100 Ligação: Roscada BSP/BW

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 1000W0G (PN63)

OPÇÕES

Roscada NPT/SW
Corpo em ASTM A216-WCB
Posicionador
Fins de Curso
Actuação: Manual com alavanca, Actuador
pneumático, Actuador Eléctrico
Sistema de bloqueio

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras.

Material Corpo: ASTM A216-WCB Material Esfera: ASTM A351-CF8M Material Vedação: PTFE/RTFE Diâmetro: DN8 — DN50 Ligação: Roscada BSP

Actuação: Manual com alavanca

Sistema de bloqueio.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +260°C Pressão máx.: 3000W0G (PN200)

OPÇÕES

Roscada NPT Corpo em ASTM A351-CF8M

VÁLVULA DE MACHO ESFÉRICO 3 CORPOS HP FIG. 2013KM

MACHO ESFÉRICO •

VÁLVULA DE MACHO ESFÉRICO 3 VIAS L / T FIG. 2057

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M

Material Vedação: PTFE Diâmetro: DN8 — DN50 Ligação: Roscada BSP

Actuação: Manual com alavanca

Sistema de bloqueio

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão max.: 1000W0G (PN63)

OPÇÕES

Roscada NPT

Corpo em ASTM A216-WCB

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M

Material Vedação: PTFE Diâmetro: DN8 — DN50 Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 1000W0G (PN63)

OPÇÕES

Roscada NPT
Corpo em ASTM A216-WCB
Posicionador
Fins de Curso
Actuação: Manual com alavanca, Actuador
pneumático, Actuador Eléctrico
Sistema de bloqueio

VÁLVULA DE MACHO ESFÉRICO 3 VIAS L / T COM BASE ISO 5211 FIG. 2057D

VÁLVULA DE MACHO ESFÉRICO 3 VIAS L / T FIG. 70 / 72

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil, farmacêutica e outras
Material Corpo: ASTM A351-CF8M
Material Vedação: PTFE, PTFE+Grafite
Diâmetro: DN3/8" — DN1.1/4"
Ligação: Roscada BSP ou Clamp
Actuação: Actuador Pneumático

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +140°C Pressão máx.: 40 Bar

OPÇÕES

Acessórios especiais de ligação. Actuação: Manual com alavanca, Actuador pneumático, Actuador Eléctrico

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M

Material Vedação: PTFE Diâmetro: DN15 — DN100

Ligação: Entre Flanges PN10/16/40/ANSI150

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 1000W0G (PN63)

OPÇÕES

Actuação: Manual com alavanca, Actuador pneumático, Actuador Eléctrico

VÁLVULA DE MACHO ESFÉRICO TIPO WAFER FIG.2052-AS

MACHO ESFÉRICO •

VÁLVULA DE MACHO ESFÉRICO TIPO WAFER FIG. MBK-50

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linhas de distribuição de Gás

natural, LPG-LNG

Material Corpo: Aço carbono Material Esfera: Aço inox AISI304

Material Vedação: PTFE Diâmetro: DN15 – DN100 Ligação: Entre Flanges

Actuação: Manual com alavanca

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40°C a +60°C Pressão máx.: PN40

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras.

Material Esfera: ASTM A351-CF8M Material Vedação: PTFE Diâmetro: DN15 – DN300

Material Corpo: ASTM A351-CF8M

Ligação: Entre Flanges PN16/40 Actuação: Manual com alavanca

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: PN16/40

OPÇÕES

Corpo em ASTM A216-WCB

VÁLVULA DE MACHO ESFÉRICO FLANGEADA SERIE 2019

VÁLVULA DE MACHO ESFÉRICO FLANGEADA COM BASE ISO 5211 FIG. 2019D

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M

Material Vedação: PTFE Diâmetro: DN15 — DN600 Ligação: Entre Flanges PN16/40

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão Máx.: PN16/40

OPÇÕES

Corpo em ASTM A216-WCB Posicionador Fins de Curso

Actuação: Manual com alavanca, Actuador

pneumático, Actuador Eléctrico

CARACTERÍSTICAS TÉCNICAS

Aplicações: Industria química, têxtil,

farmacêutica e outras.

Material Corpo: Ferro fundido EN-GJL250 (GG25)

Material Esfera: Aço inox AISI 304

Material Vedação: PTFE Diâmetro: DN15 – DN200 Ligação: Entre Flanges PN16/40

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C

Pressão Máx.: PN16

OPÇÕES

Actuação: Manual com alavanca, Actuador pneumático, Actuador Eléctrico

VÁLVULA DE MACHO ESFÉRICO FLANGEADA FERRO FUNDIDO

GI ORO

VÁLVULA PASSAGEM VEDAÇÃO POR FOLE PN16 FIG. 61

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de vapor ou

óleo térmico

Material: Corpo em EN-GJL-250 Material Fole: Aço Inox Diâmetro: DN15 — DN200

Ligação: Flangeada EN 1092-2 PN16 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +300°C Pressão Máx.: 16 Bar

OPÇÕES

Obturador parabólico ou equilibrado Obturador com anel PTFE substituível Obturador semiautomático com função de retenção

Actuação eléctrica Fins de curso

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de vapor ou

óleo térmico

Material: Corpo em EN-GJS-400

Material Fole: Aço Inox Diâmetro: DN15 — DN200

Ligação: Flangeada EN 1092-2 PN25 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +350°C Pressão Máx.: 25 Bar

OPÇÕES

Obturador parabólico ou equilibrado Obturador com anel PTFE substituível Obturador semiautomático com função de retenção Actuação eléctrica Fins de curso

VÁLVULA PASSAGEM VEDAÇÃO POR FOLE PN25 FIG. 63

VÁLVULA PASSAGEM VEDAÇÃO POR FOLE PN40 FIG. 346

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de vapor ou

óleo térmico

Material: Corpo em Aço P 250 GH

Material Fole: Aço Inox Diâmetro: DN15 — DN250

Ligação: Flangeada EN 1092-1 PN40 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +400°C Pressão Máx.: 40 Bar

OPÇÕES

Obturador parabólico ou equilibrado Obturador com anel PTFE substituível Obturador semiautomático com função de retenção Actuação eléctrica Fins de curso

CARACTERÍSTICAS TÉCNICAS

Aplicações: Combinação de várias soluções de seccionamento, retenção e/ou filtragem de

linhas de água, vapor, gases e óleo Material: Corpo em EN-GJS-400-18-LT Material Sede e Obturador: Aço Inox

Diâmetro: DN40 — DN150 Ligação: Flangeada PN16 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +350°C Pressão Máx.: 16 Bar

OPÇÕES

Flangeada PN25 Obturador parabólico ou equilibrado Obturador com anel PTFE - EPDM - NBR - VITON substituível Obturador semiautomático com função de retenção

VÁLVULA COMBINADA FIG. 2012

GI ORO

VÁLVULA PASSAGEM TIPO GLOBO GV-16

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de Vapor,

Água e Ar

Material Corpo: Aço Forjado

Material Interior: Aço Inox AISI304/GG25

Material Vedação: Metal/Metal Diâmetro: DN15 — DN400

Ligação: Flangeada EN 1092-2 PN16 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +120°C Pressão Máx.: 16 Bar

OPÇÕES

Pressão Nominal: PN25 ou PN40

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: Bronze cc-491 Material Obturador: Aço Inox Material Sede: Aço Inox Material Vedação: Metal/Metal Diâmetro: DN8 — DN100 Ligação: Roscada BSP

Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C Pressão Nominal.: PN25

OPÇÕES

Outros tipos de materiais no interior

VÁLVULA PASSAGEM TIPO GLOBO EM BRONZE FIG. 6300

VÁLVULA TIPO GLOBO EM AÇO INOX FIG. 2028

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Obturador: ASTM A351-CF8M Material Vedação: Metal/Metal Diâmetro: DN8 — DN50

Ligação: Roscada BSP

Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão Máx.: 200W0G

OPÇÕES

Roscada NPT

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria papeleira, petrolífera,

química, têxtil, e outras.

Material Corpo: Aço forjado ASTM A105 Material Obturador: ASTM A351-CF8M Material Vedação: Metal/Metal Diâmetro: DN15 — DN50 Ligação: Roscada NPT

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40°C a +420°C Pressão Máx.: 140Bar

OPÇÕES

Extremidades para soldar SW

VÁLVULA PASSAGEM CLASSE 800#

AGULHA

VÁLVULA AGULHA 3000#

CARACTERÍSTICAS TÉCNICAS

Aplicações: Industria alimentar, química, têxtil,

farmacêutica e outras.

Ligação: Roscada BSP

Material Corpo: ASTM A182 F316 Material Obturador: Aço inox AISI 316 Material Vedação: Metal/Metal Diâmetro: DN8 — DN50

Actuação: Manual com volante.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: $^{1}/_{4}$ " a $^{1}/_{2}$ " de -30°C a +260°C / $^{3}/_{4}$ " a 1.1/4" de -30°C a +240°C / 1.1/2" a 2" de -30°C a

200°C

Pressão max.: 3000 Psi

OPÇÕES

Ligação Roscada NPT

CARACTERÍSTICAS TÉCNICAS

Aplicações: Industria alimentar, química, têxtil,

farmacêutica e outras.

Material Corpo: ASTM A182 F316 Material Obturador: Aço inox AISI 316 Material Vedação: Metal/Metal Diâmetro: DN8 — DN25 Ligação: Roscada BSP

Ligação: Noscaua bor

Actuação: Manual com manipulo.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -54°C a +230°C Pressão max.: 6000 Psi a 38°C

OPÇÕES

Ligação Roscada NPT

VÁLVULA AGULHA 6000#

REGULADORAS DE CAUDAL

VÁLVULA DE CUNHA FUSO INTERIOR FIG. 10/OR

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas água, gases

e óleo

Material: Corpo em EN-GJL-250 Material Cunha: Ferro fundido/latão

Diâmetro: DN40 - DN300

Ligação: Flangeada EN 1092-2 PN10 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +80°C Pressão Máx.: 10 Bar

OPÇÕES

Sede em aço inox AISI304 Vedantes especiais para temperaturas até 150°C Fins de Curso Indicador de Posição Caixa redutora de actuação eléctrica

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas água, gases

e óleo

Material: Corpo em EN-GJL-250 Material Cunha: Ferro fundido/latão

Diâmetro: DN40 - DN300

Ligação: Flangeada EN 1092-2 PN16 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +80°C Pressão Máx.: 10 Bar

OPÇÕES

Sede em aço inox AISI304 Vedantes especiais para temperaturas até 150°C Fins de Curso Indicador de Posição Caixa redutora de actuação eléctrica Fecho rápido por alavanca

VÁLVULA DE CUNHA FUSO INTERIOR FIG.40

CHNHV

VÁLVULA DE CUNHA FUSO EXTERIOR FIG.15

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas água, gases

e óleo

Material: Corpo em EN-GJL-250 Material Cunha: Ferro fundido/latão

Diâmetro: DN40 - DN300

Ligação: Flangeada EN 1092-2 PN10 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +80°C Pressão Máx.: 10 Bar

OPÇÕES

Sede em aço inox AISI304 Vedantes especiais para temperaturas até 150°C Fins de Curso Indicador de Posição Caixa redutora de actuação eléctrica

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas água, gases

e óleo

Material: Corpo em EN-GJL-250 Material Cunha: Ferro fundido/latão

Diâmetro: DN40 - DN300

Ligação: Flangeada EN 1092-2 PN16 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +80°C Pressão Máx.: 16 Bar

OPÇÕES

Sede em aço inox AISI304 Vedantes especiais para temperaturas até 150°C Fins de Curso Indicador de Posição Caixa redutora de actuação eléctrica

VÁLVULA DE CUNHA FUSO EXTERIOR FIG.41

VÁLVULA DE CUNHA 150#

CARACTERÍSTICAS TÉCNICAS

Aplicações: Industria papeleira, petrolífera,

química, têxtil, e outras.

Material: Corpo Aço carbono ASTM A216 WCB Material Cunha: Aço ASTM A182 F.6 + Inox

Diâmetro: DN40 - DN300

Ligação: Flangeada ANSI B16.5 150#RF

Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +454°C Pressão Máx.: 20 Bar

OPÇÕES

Medidas Superiores Ligações BW Corpo em Aço Inox e WC6 Fins de Curso Sede e cunha Setelitada Caixa redutora

CARACTERÍSTICAS TÉCNICAS

Aplicações: Industria papeleira, petrolífera, química, têxtil, e outras.

Material: Corpo Aço carbono ASTM A216 WCB Material Cunha: Aço ASTM A182 F.6 + Inox

Diâmetro: DN40 - DN300

Ligação: Flangeada ANSI B16.5 300#RF

Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +454°C Pressão Máx.: 50 Bar

OPÇÕES

Medidas Superiores Ligações BW Corpo em Aço Inox e WC6 Fins de Curso Sede e cunha Setelitada Caixa redutora

VÁLVULA DE CUNHA 300#

CHMHV

VÁLVULA DE CUNHA ELÁSTICA FIG. 20.900

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de AVAC, tratamento e distribuição de água, aplicações

industriais e agrícolas

Material: Corpo em EN-GJS-500 Material Cunha: GJS 400-15 + EPDM

Diâmetro: DN40 – DN300

Ligação: Flangeada EN 1092 PN16 Actuação: Manual com volante

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +70°C Pressão Max.: 16 Bar

OPÇÕES

Material Cunha em GJS 400-15 + NBR Veio extensível Indicador de Posição

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de HAVAC, tratamento e distribuição de água, aplicações industriais e agrícolas

Material: Corpo Fundição Nodular

Material Cunha: Aço carbono revestida a EPDM

Diâmetro: DN40 - DN200

Ligação: Flangeada EN 1092 PN16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +120°C Pressão Max.: 16 Bar

OPÇÕES

Ligações PN6 - PN10 / ANSI 150#

VÁLVULA DE CUNHA TIPO WAFER FIG. 2010

DESCARGA DE CALDEIRA

VÁLVULA PURGA DE LODOS FIG. DS BDV

CARACTERÍSTICAS TÉCNICAS

Aplicações: Descarga de resíduos nos geradores de vapor Material: Corpo em ASTM A216 WCB, obturador em ASTM F6A e sede AlSI410A

setelitada grau 6

Diâmetro: DN32 a DN40 Ligação: Flangeada PN40 Atuação: Manual por alavanca

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 400°C Pressão Máx.: PN40

OPÇÕES

Atuação: Pneumática

CARACTERÍSTICAS TÉCNICAS

Aplicações: Descarga de resíduos nos geradores

de vapor

Material: Corpo em ASTM A216 WCB

Material da Sede AlSI410A stelitada grau 6 e

Obturador ASTM F6A Diâmetro: DN40

Ligação: Flangeada PN40 Atuação: Pneumática

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 400°C Pressão Max.: 40 Bar

OPÇÕES

Flangeada UNI ou ANSI

VÁLVULA PURGA DE LODOS COM ACTUADOR PNEUMÁTICO FIG. BDVPA

GUILHOTINA

VÁLVULA DE GUILHOTINA UNIDIRECIONAL SÉRIE A

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de fluidos em linhas de tratamento e distribuição de água, na indústria papeleira, cimenteira e outras. Material Corpo: GG25 ou CF8M Material Guilhotina: AISI304 ou AISI316

Material Vedação: Metal/Metal, EPDM, PTFE, FKM

(VITON), SILICONE

Diâmetro: DN50 - DN2000

Ligação: Entre Flanges EN 1092 PN10

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +250°C

OPÇÕES

Ligação ente flanges PN6/16/25 / ANSI 150# Fins de curso

Eléctroválvulas e posicionadores de comando Actuação manual com volante, alavanca ou desmultiplicador, actuador pneumático, eléctrico ou hidráulico.

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de fluidos em linhas de tratamento e distribuição de água, na indústria papeleira, cimenteira e outras. Material Corpo: GG25 ou CF8M Material Guilhotina: AISI304 ou AISI316 Material Vedação: EPDM, NBR, FKM (VITON),

SILICONE

Diâmetro: DN50 - DN600

Ligação: Entre Flanges EN 1092 PN10

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +200°C

OPÇÕES

Ligação entre flanges PN6/16/25 / ANSI 150# Aplicação de rascador e defletores Fins de curso Eléctroválvulas e posicionadores de comando. Actuação manual com volante, alavanca ou desmultiplicador, actuador pneumático, eléctrico ou hidráulico.

VÁLVULA DE GUILHOTINA BIDIRECIONAL SÉRIE AB

VÁLVULA DE GUILHOTINA BIDIRECIONAL SÉRIE L

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de fluidos em linhas de tratamento e distribuição de água, na indústria papeleira, cimenteira, alimentar e outras

Material Corpo: S275JR, AISI304 OU AISI316 Material Guilhotina: AISI304 ou AISI316 Material Vedação: EPDM, NBR, FKM (VITON),

SILICONE, PTFE

Diâmetro: 125X125MM - 1400X1400MM

Ligação: Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +250°C Pressão serviço: 0,5Kg/cm2

OPÇÕES

Secções rectangulares ou de maior dimensão Aplicação de defletor Fins de curso Eléctroválvulas e posicionadores de comando Actuação manual com volante, desmultiplicador, actuador pneumático, eléctrico ou hidráulico

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de fluidos em linhas de tratamento e distribuição de água, na indústria papeleira, cimenteira, alimentar e

Material Corpo: GJL-250 ou CF8M Material Guilhotina: AlSI304 ou AlSI316 Material Vedação: EPDM, NBR, FKM (VITON),

SILICONE, PTFE

Diâmetro: DN50 - DN2000

Ligação: Entre Flanges EN 1092 PN10

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: +250°C

OPÇÕES

Ligação entre flanges PN6/16/25 / ANSI 150# Aplicação de rascador e defletores Fins de curso

Eléctroválvulas e posicionadores de comando Actuação manual com volante, alavanca ou desmultiplicador, actuador pneumático, eléctrico ou hidráulico

VÁLVULA DE GUILHOTINA UNIDIRECIONAL SÉRIE C

GUILHOTINA

COMPORTA MURAL SÉRIE MC

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de fluidos em linhas de tratamento e distribuição de água, centrais hidroeléctricas, e outras

Material Corpo: S275JR, AISI304 OU AISI316 Material Guilhotina: S275JR, AISI304 ou AISI316 Material Vedação: EPDM, NBR, FKM (VITON),

SILICONE, PTFE

Diâmetro: 150X150MM - 3000X3000MM

Ligação: Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: +250°C

OPÇÕES

Secções rectangulares, ou de maior dimensão Fins de curso

Eléctroválvulas e posicionadores de comando Actuador manual de emergência

Actuação manual com volante, desmultiplicador, actuador pneumático, eléctrico ou hidráulico

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento em linhas de ar ou gases de escape

Corpo soldado com possibilidade de diferentes materiais

Diâmetro: 150X150MM - 3000X3000MM

Ligação: Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: +900°C

OPÇÕES

Secções retangulares, ou de maior dimensão Fins de curso

Eléctroválvulas e posicionadores de comando Actuação pneumática ou eléctrica

DAMPER MULTI-LAMINA SÉRIE PL

RETENÇÃO

VÁLVULA RETENÇÃO DE DISCO FIG. CV10/11S2

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linhas de Vapor, Água, Gases ou

Outros Líquidos

Material: Corpo em Aço Inox AISI316

Diâmetro: DN15 – DN200

Ligação: Montagem Entre Flanges

Pressão Nominal: PN40

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a 300 °C Pressão Máxima: 40 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: Aço Inox AISI316 Material Disco: Aço Inox AISI316 Material Vedação: Viton

Diâmetro: DN40 – DN400

Ligação: Montagem Entre Flanges

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +180°C Pressão Nominal: PN25

VÁLVULA RETENÇÃO TIPO WAFER EM AÇO INOX

RETENÇÃO (

VÁLVULA DE RETENÇÃO DISCO BIPARTIDO FIG. D6.021

CARACTERÍSTICAS TÉCNICAS

Aplicações: Anti retorno de fluidos em linhas de AVAC, tratamento e distribuição de água, aplicações industriais e grupos de bombagem

Material: Corpo em EN-GJI-250 Material Disco: AISI 304 Material Vedação: EPDM Material da Mola: Aço Inox AISI316

Diâmetro: DN40 — DN600 Ligação: Entre Flanges EN 1092

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +100°C Pressão Max.: 16 Bar

OPÇÕES

Material Disco: EN GJS 400, Alumínio-bronze

CARACTERÍSTICAS TÉCNICAS

Aplicações: Anti retorno de fluidos em linhas de produtos químicos, de AVAC, tratamento e distribuição de água, aplicações industriais e grupos de bombagem

Material: Corpo ASTM A351 gr. CF8M Material Disco: ASTM A351 gr. CF8M Material Vedação: FKM (VITON) Material da Mola: Aço Inox AISI316 Diâmetro: DN40 – DN600 Ligação: Entre Flanges EN 1092

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20° a +150°C Pressão Max.: 16 Bar

OPÇÕES

Material Disco: Alumínio-bronze Vedação Metal/Metal -20° a +300°C

VÁLVULA DE RETENÇÃO DISCO BIPARTIDO FIG. D6.622 INOX

VÁLVULA RETENÇÃO EM AÇO INOX ESTAMPADO

MONDEO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linhas de Vapor, Água, Gases ou Outros Líquidos

Material Corpo: Aço Inox AISI304 ou AISI316 Material Disco: Aço Inox AISI304 ou AISI316

Material de Vedação: FPM Diâmetro: DN8 — DN100 Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20 a 150 °C Pressão Nominal: PN16

OPÇÕES

Material de Vedação: NBR ou PTFE Aplicação de filtro em Aço Inox

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linhas de Vapor, Água, Gases ou

Outros Líquidos

Material Corpo: Aço Inox AISI316 Material Disco: Aço Inox AISI316

Vedação: Metal/Metal Diâmetro: DN8 — DN100 Ligação: Rosca F/F BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20 a 200 °C Ligações: NPT, SW ou BW

VÁLVULA RETENÇÃO 3 CORPOS

RETENÇÃO •

VÁLVULA RETENÇÃO TIPO OBTURADOR PN16 FIG. 55

CARACTERÍSTICAS TÉCNICAS

Aplicações: Anti retorno de fluido em linhas de

vapor, água, óleo ou gases Material: EN-GJL-250 Sede e Obturador: Aço Inox Diâmetro: DN15 — DN200

Ligação: Flangeada EN 1092-2 PN16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +300°C Pressão Max.: 16 Bar

OPÇÕES

Sede e obturador estelitado

CARACTERÍSTICAS TÉCNICAS

Aplicações: Anti retorno de fluido em linhas de

vapor, água, óleo ou gases Material: EN-GJS-400-18-LT Sede e Obturador: Aço Inox Diâmetro: DN15 — DN200

Ligação: Flangeada EN 1092-2 PN25

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +350°C Pressão Max.: 25 Bar

OPÇÕES

Sede e obturador estelitado

VÁLVULA RETENÇÃO TIPO OBTURADOR PN25 FIG. 57

VÁLVULA RETENÇÃO EM BRONZE FIG. 6200

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil, farmacêutica e outras. Material Corpo: Bronze cc-491 Material Obturador: Aço Inox Material Sede: Aço Inox Material Vedação: Metal/Metal Diâmetro: DN8 - DN100 Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +200°C Pressão Nominal.: PN25

OPÇÕES

Outros tipos de materiais no obturador

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras.

Material Corpo: ASTM A351-CF8M Material Obturador: ASTM A351-CF8M Material Vedação: Metal/Metal Diâmetro: DN15 - DN80

Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 200W0G

OPÇÕES

Roscada NPT

Extremidades para soldar SW

VÁLVULA RETENÇÃO EM AÇO INOX FIG. 2030

RETENÇÃO

VÁLVULA RETENÇÃO EM AÇO CLASSE 800#

CARACTERÍSTICAS TÉCNICAS

Aplicações: Industria papeleira, petrolífera, química, têxtil, e outras.

Material Corpo: Aço forjado ASTM A105

Material Obturador: ASTM A351-CF8M

Material Vedação: Metal/Metal

Diâmetro: DN15 — DN50

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40°C a +420°C Pressão max.: 140Bar

Ligação: Roscada NPT

OPÇÕES

Extremidades para soldar SW

CARACTERÍSTICAS TÉCNICAS

Aplicações: Anti retorno e protecção em grupos de bombagem de linhas de distribuição de água e aplicações industriais.

Material Corpo: GG25 Material Disco: GG25 Material Vedação: Buna-N Material da Mola: Aço Inox AISI302

Material da Mola: Aço Inox AISI31 Material Filtro: Aço Cadmiado Diâmetro: DN50 — DN2500 Ligação: Flangeada PN10/16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +100°C Pressão Máx.: 10 Bar

OPÇÕES

Material Filtro: Aço Inox AISI304

VÁLVULA DE RETENÇÃO DE DISCO AXIAL

VÁLVULA DE RETENÇÃO DE BOLA ROSCADA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Grupos de bombagem, tratamento e distribuição de água e produtos viscosos

Material: Corpo em GJS400 Material Bola: Resina Diâmetro: DN1" — DN3" Ligação: Roscada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +80°C Pressão Max.: 10 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Grupos de bombagem, tratamento e distribuição de água e produtos viscosos

Material: Corpo em GJS400

Material Bola: Alumínio ou Ferro Fundido + NBR

Diâmetro: DN40 — DN400 Ligação: Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10° a +80°C Pressão Max.: 10 Bar

VÁLVULA DE RETENÇÃO DE BOLA FLANGEADA

A Automação Industrial resulta da aplicação dos actuadores que permitiram a

substituição dos accionamentos manuais por accionamentos automáticos.

PNEUMÁTICOS

ACTUADOR PNEUMÁTICO OMAL - ALUMÍNIO

CARACTERÍSTICAS TÉCNICAS

Duplo (DA) e Simples efeito (SR) Material: Corpo em Aço Inox CF8M Torque de 15 Nm a 480 Nm

Flange de montagem: DIN/ISO 5211 DIN 3337 F03

a F10

Ângulo de rotação: 90º

O código numérico posterior às iniciais SR e DA corresponde ao torque, em Nm, obtido com uma alimentação de ar de 5,6 bar

Parafusos internos e externos em aço inox de

grande resistência à corrosão Certificações: SIL IEC 61508, EAC, UKR

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a 80°C Alimentação de Ar: Máximo 8,4 bar

OPÇÕES

Disponível em ATEX Fins de curso externos Posicionadores pneumáticos/ electropneumáticos

CARACTERÍSTICAS TÉCNICAS

Duplo (DA) e Simples efeito (SR) Material: Corpo em Alumínio Torque de 4,3 Nm a 10000 Nm Flange de montagem: DIN/ISO 5211 DIN 3337 FO3 a F25

Ângulo de rotação: 90°

O código numérico posterior às iniciais SR e DA corresponde ao torque em Nm, obtido com uma

alimentação de ar de 5,6 bar

Parafusos internos e externos em aço inox de grande resistência à corrosão

Certificações: SIL IEC 61508, EAC, UKR

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0 °C a 80 °C Alimentação de Ar: Máximo 8,4 bar

OPÇÕES

Versão especial: Temperatura de serviço -20°C a 150°C
Disponível em ATEX
Fins de curso externos
Posicionadores pneumáticos/
electropneumáticos

ACTUADOR PNEUMÁTICO OMAL – AÇO INOX

ACTUADOR PNEUMÁTICO OMAL – AÇO INOX (ALTO TORQUE)

CARACTERÍSTICAS TÉCNICAS

Duplo (DA) e Simples efeito (SR) O dispositivo de operação de emergência atua na transmissão mecânica primária do atuador pneumático

Material: Corpo em Alumínio Torque de 60 Nm a 960 Nm

Flange de montagem: DIN/ISO 5211 DIN 3337 F03 a F12

Ângulo de rotação: 90º

O código numérico posterior às iniciais SR e DA corresponde ao torque, em Nm, obtido com uma alimentação de ar de 5,6 bar

Parafusos internos e externos em aço inox de grande resistência à corrosão Certificações: SIL IEC 61508, EAC, UKR

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a 80°C Alimentação de Ar: Máximo 8,4 bar

CARACTERÍSTICAS TÉCNICAS

Duplo (DA) e Simples efeito (SR) Material: Corpo em Aço Inox Torque de 360 Nm a 1920 Nm

Flange de montagem: DIN/ISO 5211 DIN 3337 F10

a F16

Ângulo de rotação: 90º

O código numérico posterior às iniciais SR e DA corresponde ao torque, em Nm, obtido com uma

alimentação de ar de 5,6 bar

Parafusos internos e externos em aço inox de

grande resistência à corrosão Certificações: SIL IEC 61508, EAC, UKR

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a 80°C Alimentação de Ar: Máximo 8,4 bar

OPÇÕES

Disponível em ATEX
Fins de curso externos
Posicionadores pneumáticos/
electropneumáticos

ACTUADOR PNEUMÁTICO OMAL COM VOLANTE PARA ACCIONAMENTO MANUAL

PNEUMÁTICOS •

ACTUADOR PNEUMÁTICO PRISMA - ALUMÍNIO

CARACTERÍSTICAS TÉCNICAS

Controlo pneumático de diversos tipos de válvulas
Simples e Duplo efeito
Material: Corpo em Poliamida e Fibra de Vidro Ideal para ambientes com muita humidade
Torque de 17 Nm a 165 Nm a 6 bar
De acordo com as directivas Internacionais: ISO, DIN, NAMUR, VDI/VDE, ATEX, CE, DNV, PCT, SIL2.
Conexão NAMUR para acessórios
Tratamento anticorrosivo
Ângulo de rotação: 0 - 90°C
Certificação ATEX
Baixo peso

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: $-32 \text{ a } 90 \,^{\circ}\text{C} \text{ (}-50 \text{ a } 90 \,^{\circ}\text{C por encomenda}\text{)}$

Alimentação: Ar ou qualquer fluido não agressivo

até 8 bar

OPÇÕES

Fins de curso externos Posicionadores pneumáticos/ electropneumáticos

CARACTERÍSTICAS TÉCNICAS

Controlo pneumático de diversos tipos de válvulas
Simples e Duplo efeito
Material: Corpo em Alumínio
Torque de 17 Nm a 5000 Nm a 6 bar
De acordo com as directivas Internacionais: ISO,
DIN, NAMUR, VDI/VDE, ATEX, CE, DNV, PCT, SIL2
Conexão NAMUR para acessórios.
Accionável por ar ou fluido não agressivo
Tratamento anticorrosivo
Ângulo de rotação: 0 - 90°C ou 0 - 180°C
Torque: directamente proporcional à alimentação de ar
Certificação ATEX

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -32 a 90 °C (-50 a 90°C por encomenda) Alimentação: Ar ou fluido não agressivo até 8 bar

OPÇÕES

Fins de curso externos Posicionadores pneumáticos/ electropneumáticos

ACTUADOR PNEUMÁTICO PRISMA - POLIAMIDA

ACTUADOR PNEUMÁTICO PRISMA – AÇO INOX

CARACTERÍSTICAS TÉCNICAS

Material do Corpo: Plástico Material do Interior: Inox 304

Material de Vedação: Juntas de borracha

patenteadas

Torque: 5 Nm a 440 Nm

Flange de montagem: de acordo com ISO FO3 a

F10

Ângulo de rotação: 90º

Ligação: 1/4 "G

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: 0°C a + 80°C Pressão de alimentação: Máximo 8 bar Fluido de alimentação: Ar comprimido, água ou óleo hidráulico

Possibilidade de utilização em ambientes húmidos, agressivos e debaixo de água

OPÇÕES

Fins de curso externos Posicionadores pneumáticos/ electropneumáticos

CARACTERÍSTICAS TÉCNICAS

Controlo pneumático de diversos tipos de válvulas
Simples e Duplo efeito
Material: Corpo em Aço Inox
Ideal para ambientes altamente corrosivos
Torque de 25 Nm a 470 Nm a 6 bar
De acordo com as directivas Internacionais: ISO,
DIN, NAMUR, VDI/VDE, ATEX, CE, DNV, PCT, SIL2
Conexão NAMUR para acessórios
Tratamento anticorrosivo
Ângulo de rotação: 0 - 90°C
Certificação ATEX

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: $-32 \text{ a } 90 \,^{\circ}\text{C}$ ($-50 \text{ a } 90 \,^{\circ}\text{C}$ por

encomenda)

Baixo peso

Alimentação: Ar ou qualquer fluido não agressivo

até 8 bar

OPÇÕES

Fins de curso externos Posicionadores pneumáticos/ electropneumáticos

ACTUADOR PNEUMÁTICO BAIBY

ELÉCTRICOS

ACTUADOR ELÉCTRICO ROTATIVO ON-OFF OMAL

CARACTERÍSTICAS TÉCNICAS

Actuador ON-OFF, ângulo de funcionamento 90° [máx. 100°C]

Material: Corpo em Alumínio

Flange de montagem de F03 a F14 : ISSO 5211

Torque de 10 Nm a 1960 Nm Motor com isolamento Classe E

Protecção: IP65

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -25 a 55 °C

Alimentação: 230 Vac (+-10%) 50/60 Hz 1Ph

CARACTERÍSTICAS TÉCNICAS

Actuador MODULANTE, ângulo de funcionamento 90º (máx. 100°C)

30 (IIIax. 100 C)

Material: Corpo em Alumínio

Flange de montagem de F05 a F14 : ISSO 5211

Torque de 49 Nm a 1960 Nm Motor com isolamento Classe E

Protecção: IP65

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -25 a 55 °C

Alimentação: 230 Vac (+-10%) 50/60 Hz 1Ph Sinal entrada: 4 20 mA (1 5 Vdc) - 4 12 mA (1 3

Vdc) - 12 20 mA (3 5Vdc) Sinal saída: 4 20 mA (1 5 Vdc)

ACTUADOR ELÉCTRICO ROTATIVO MODULANTE OMAL

ACTUADOR ELÉCTRICO SÉRIE J2/ J3 ON/OFF J&J

CARACTERÍSTICAS TÉCNICAS

Controlo eléctrico de diversos tipos de válvulas Material: Corpo em Poliamida Anticorrosiva, Veios e parafusaria em Aço Inox, Engrenagens Poliamida, Indicador Visual de Posição em Poliamida + Fibra de Vidro

Torque de 10 Nm a 300 Nm Motor: Monofásico Protecção: IP67

Ligação: ISO5211 Multiflange F03/F05, F07/F10

Ângulo de rotação: 90 - 270°C Comando manual de emergência

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20 a +70 °C Alimentação: 12 - 240 VAC/VDC

OPÇÕES

Bateria de segurança Placa Posicionadora

CARACTERÍSTICAS TÉCNICAS

Controlo eléctrico de diversos tipos de válvulas Material: Corpo em Poliamida Anticorrosiva, Veios e parafusaria em Aço Inox, Engrenagens Poliamida, Indicador Visual de Posição em

Poliamida + Fibra de Vidro Torque de 10 Nm a 300 Nm Motor: Monofásico

Motor: Monofásico Protecção: IP67

Ligação: ISO5211 Multiflange F03/F05, F07/F10

Ângulo de rotação: 90 - 270°C Comando manual de emergência

Posicionador digital: 0 20 mA, 4 20 mA e 0 10 V

Potenciómetro digital: 1K, 5K e 10K

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20 a +70 °C Alimentação: 12 - 240 VAC/VDC

OPÇÕES

Bateria de segurança

ACTUADOR ELÉCTRICO SÉRIE J2/ J3 MODULANTE J&J

ELECTROVÁLVULAS DE DISTRIBUIÇÃO PNEUMÁTICA • •

ELECTROVÁLVULA NAMUR 3/2 E 5/2 PRISMA

CARACTERÍSTICAS TÉCNICAS

Material: Alumínio, Poliamida ou Alumínio

anodizado Protecção: IP65 Pressão: 2 a 8 bar

Funcionamento: 5/2 vias e 3/2 vias

Conexões/tensões disponíveis: 24V AC/DC, 110V

AC e 220V AC Conexão Ar: G ¹/₄"

OPÇÕES

Namur, não Namur

CARACTERÍSTICAS TÉCNICAS

Material: Alumínio, Poliamida ou Alumínio

anodizado Protecção: IP67 Pressão: 2 a 8 bar

Funcionamento: 5/2 vias e 3/2 vias

Conexões/tensões disponíveis: 24V AC/DC, 48V

AC/DC, 110V AC/DC e 220V AC

Conexão Ar: G 1/4"

OPÇÕES

Namur, não Namur, Eexi, Eexd

ELECTROVÁLVULA NAMUR 3/2 E 5/2 ATEX

FINS DE CURSO

CAIXA FIM DE CURSO PRISMA

CARACTERÍSTICAS TÉCNICAS

A sua montagem no topo dos actuadores pneumáticos permite o envio de um sinal eléctrico para indicação da posição do actuador

(aberto ou fechado)

Duas sinalizações (sinal aberto / fechado) Material: Alumínio revestido com polyester e aço

Base em Aço Inox para acoplamento directo sobre actuadores

Caixa do indicador em policarbonato com tampa transparente

Protecção: IP-67

Temperatura: -20 a 80°C

Conexões: 8 terminais possibilitando 2 fins de

curso + electroválvula

OPÇÕES

Modelos disponíveis:

CFCE: Caixa Fim de curso Electromecânica CFCI: Caixa Fim de curso Inductiva (Eexi, PNP, NPN,...) EXD: Caixa Fim de Curso Exd EX II2G Ex d IICT6

CARACTERÍSTICAS TÉCNICAS

A sua montagem no topo dos actuadores pneumáticos permite o envio de um sinal eléctrico ou pneumático para indicação da posição do actuador (aberto ou fechado) Protecção: IP65 a IP68 Possibilidade de montagem em actuadores de duplo ou simples efeito

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20 a 80 °C

Alimentação: 12, 24, 48, 80, 110, 220, 240 VAC/

VDC

OPÇÕES

Protecção Antideflagrante Eexd IIC T6 Fins de curso mecânicos ou de proximidade (indutivos)

FINS DE CURSO MECÂNICOS OU **DE PROXIMIDADE**

POSICIONADORES E CONVERSORES DE SINAL

POSICIONADOR LINEAR PNEUMÁTICO – PPL / PPL-EX

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Permite o controlo proporcional da abertura/ fecho dos actuadores pneumáticos lineares através de sinal eléctrico

Comando de actuadores de simples ou duplo efeito

Conversão fácil entre acção directa e inversa Operação através da comparação do sinal de controlo e do feedback da posição da abertura da válvula

Ajuste com precisão do zero e span Resistente a vibrações

CONDIÇÕES DE FUNCIONAMENTO

Sinal de comando eléctrico: 4 a 20 mA Pressão de alimentação de ar comprimido ao actuador: máximo 7 Bar

Temperatura ambiente: -20 a +70 °C

OPÇÕES

Transmissão de posição: 4..20mA Protecção ATEX

CARACTERÍSTICAS TÉCNICAS

Permite o controlo proporcional da abertura/ fecho dos actuadores pneumáticos lineares através de sinal de comando pneumático Comando de actuadores de simples ou duplo efeito

Conversão fácil entre acção directa e inversa Operação através da comparação do sinal de controlo e do feedback da posição da abertura da válvula

Ajuste com precisão do zero e span Resistente a vibrações

CONDIÇÕES DE FUNCIONAMENTO

Sinal de comando de ar comprimido: 3 a 15 p.s.i. Pressão de alimentação de ar comprimido ao actuador: máximo 7 Bar

Temperatura ambiente: -20 a +70 °C

OPÇÕES

Transmissão de posição: 4..20mA Protecção ATEX

POSICIONADOR LINEAR ELECTRO-PNEUMÁTICO — EPL / EPL-EX

CONFLOW

POSICIONADOR ROTATIVO PNEUMÁTICO – PPR / PPR-EX

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Permite o controlo proporcional da abertura/ fecho dos actuadores pneumáticos rotativos através de sinal eléctrico

Comando de actuadores de simples ou duplo efeito

Conversão fácil entre acção directa e inversa Operação através da comparação do sinal de controlo e do feedback da posição da abertura da válvula

Ajuste com precisão do zero e span Resistente a vibrações

CONDIÇÕES DE FUNCIONAMENTO

Sinal de comando eléctrico: 4 a 20 mA Pressão de alimentação de ar comprimido ao actuador: máximo 7 Bar Temperatura ambiente: -20 a +70 °C

OPÇÕES

Transmissão de posição: 4..20mA Protecção ATEX

CARACTERÍSTICAS TÉCNICAS

Permite o controlo proporcional da abertura/ fecho dos actuadores pneumáticos rotativos através de sinal de comando pneumático Comando de actuadores de simples ou duplo efeito

Conversão fácil entre acção directa e inversa Operação através da comparação do sinal de controlo e do feedback da posição da abertura da válvula

Ajuste com precisão do zero e span Resistente a vibrações

CONDIÇÕES DE FUNCIONAMENTO

Sinal de comando de ar comprimido: 3 a 15 p.s.i. Pressão de alimentação de ar comprimido ao actuador: máximo 7 Bar

Temperatura ambiente: -20 a +70 °C

OPÇÕES

Transmissão de posição: 4..20mA Protecção ATEX

POSICIONADOR ROTATIVO ELECTRO-PNEUMÁTICO — EPR / EPR-EX

POSICIONADORES E CONVERSORES DE SINAL

POSICIONADOR LINEAR / ROTATIVO ELECTRO-PNEUMÁTICO - SMART SS2L / SS2R

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Permite a conversão de um sinal de corrente eléctrica continua em sinal pneumático Elevada velocidade de conversão com recurso a válvula piezoélectrica Fácil ajuste e calibração Ajuste de zero (sem sinal residual) e de span Sem necessidade de manutenção Resistente a vibrações Caixa e tampa de desenho compacto IP55 Possibilidade de montagem em calha DIN EN 50022 35mm

CONDIÇÕES DE FUNCIONAMENTO

Sinal eléctrico de entrada: 4..20 mA (2 fios) Alimentação: 24Vdc

Ligações pneumáticas IN/OUT: 1/8" NPT fêmea Pressão máxima de operação: 1,4 ou 3,5 Bar mediante modelo

Temperatura ambiente: -20°C a + 70°C

OPÇÕES

Gama de conversão: 0..15 PSI, 0..18 PSI, 3..15 PSI e 6..30 PSI

CARACTERÍSTICAS TÉCNICAS

Permite o controlo proporcional da abertura/ fecho dos actuadores pneumáticos lineares ou rotativos através de sinal eléctrico Comando de actuadores de simples ou duplo efeito

Detecção automática do comando por acção directa ou inversa

Ajuste com precisão do zero e span com autocalibração automática

Display com mensagens de estado e de erros Operação através da comparação do sinal de controlo e do feedback da posição da abertura da válvula

CONDIÇÕES DE FUNCIONAMENTO

Sinal de comando eléctrico: 4 a 20 mA Pressão de alimentação de ar comprimido ao actuador: máximo 7 Bar

Temperatura ambiente: -30 a +85 °C

OPÇÕES

Transmissão de posição: 4..20mA Fins de curso de posição aberto e fechado Comunicação HART e PROFIBUS Protecção ATEX

CONVERSOR ELECTRO-PNEUMÁTICO DIGITAL - IPC

CONTROLO E INDICAÇÃO DE PRESSÃO E TEMPERATURA •

CONTROLADOR DE PRESSÃO PNEUMÁTICO – 82P

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Ideal para controlo de temperatura de forma fácil e fiável

Exibe o valor de temperatura actual e compara-o com o valor de set point enviando um sinal penumático modulante para controlo do equipamento

Ajuste de parâmetros de controlo: banda proporcional (20-200%), tempo de reset (no caso de controladores com opção de controlo integral) Montagem em painel ou na parede Caixa em alumínio com pintura anti-corrosiva Modelo standard: controlador proporcional

CONDIÇÕES DE FUNCIONAMENTO

Ligações pneumáticas 1/4" NPT com acessórios para tubo 4x6 mm

Pressão máxima de alimentação de ar comprimido ao controlador: 20 PSI ou 35 PSI Temperatura ambiente: -20°C a +80°C

OPÇÕES

Várias escalas de controlo possíveis: desde 20°C a 500°C

Sinal de saída pneumático: 3..15 PSI (0,2..1 bar), 6..18 PSI (0,4..1,2 bar), 6..30 PSI (0,5..2 bar) Tipos de controlador: 0N/0FF, proporcional, proporcional+integral

CARACTERÍSTICAS TÉCNICAS

ldeal para controlo de pressão de forma fácil e fiável

Exibe o valor de pressão actual e compara-o com o valor de set point enviando um sinal penumático modulante para controlo do equipamento

Ajuste de parâmetros de controlo: banda proporcional (20-200%), tempo de reset (no caso de controladores com opção de controlo integral) Montagem em painel ou na parede Caixa em alumínio com pintura anti-corrosiva Modelo standard: controlador proporcional

CONDIÇÕES DE FUNCIONAMENTO

Ligações pneumáticas 1/4" NPT com acessórios para tubo 4x6 mm

Pressão máxima de alimentação de ar comprimido ao controlador: 20 PSI ou 35 PSI Temperatura ambiente: -20°C a +80°C

OPÇÕES

Várias escalas de controlo possíveis: desde 0..1 Bar a 0..1200 Bar Sinal de saída pneumático: 3..15 PSI (0,2..1 bar), 6..18 PSI (0,4..1,2 bar), 6..30 PSI (0,5..2 bar) Tipos de controlador: 0N/0FF, proporcional, proporcional+integral

CONTROLADOR DE TEMPERATURA PNEUMÁTICO – 82R

CONTROLO E INDICAÇÃO DE PRESSÃO E TEMPERATURA • •

CONTROLADOR DE PRESSÃO / TEMPERATURA DIGITAL

CARACTERÍSTICAS TÉCNICAS

Controlo On/Off ou PID c/ auto-tuning Entrada de sensor configurável para: Corrente DC de 0...20 mA e 4...20 mA; Tensão DC de 0...1 V, 0...10 V, 1...5 V e 0...5 V; Termopar K, J, R, S, B, E, T, N, PL-II, C(W/Re5-26);Termoresistência Pt100 e JPt100; Saída: por relé, 4...20 mA ou SSR; 1 alarme configurável Alimentação: 100...240 VAC ou 24 VAC/DC Display a cores c/indicador independente para PV e SV e comutação de cores conforme o estado de PV comparado com SV Conexão USB p/ligação a PC e software de configuração e monitorização 3 tipos de bloqueios de programação Taxa de amostragem 0,25seg Caixa policarbonato e frontal em membrana em poliéster IP66 Dimensões frontais: L48xA48xP56mm

TRANSMISSORES E INDICADORES DE PRESSÃO E TEMPERATURA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria têxtil, química, alimentar, farmacêutica e outras Indicação de temperatura e/ou de pressão em processos industriais Possibilidade de indicação simultânea da pressão e da temperatura Contactos eléctricos de saída para alarme e/ou automação

CONDIÇÕES DE FUNCIONAMENTO

Gama de pressão: -1 a 250 Barg Gama de temperatura: -50 a 200 °C

OPÇÕES

Transmissão de sinal analógico: (0)4...20 mA, 0...10 V Certificação ATEX

INDICADOR DIGITAL DE PRESSÃO / TEMPERATURA

TRANSMISSORES E INDICADORES DE PRESSÃO E TEMPERATURA

TRANSMISSORES DE PRESSÃO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Medição de temperatura em aplicações industriais Elevada gama de temperaturas de medição Sonda temperatura PT100, PT100 ou termopar Material da sonda em Inox 316 L Comprimento e diâmetro da haste ajustável Classe de precisão A ou B Ligações a 3 ou 4 fios

CONDIÇÕES DE FUNCIONAMENTO

Gama de Tempertaturas máx. PT100 / PT1000: -50 a +250/+500 °C

OPÇÕES

Bainha de protecção em aço inox Conversor de sinal com saída 4..20 mA Indicação digital local Cabeça de ligações metálica, em PVC, com conector DIN ou ligação por cabo

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, industria textil, química,

Médica, Alimentar

Material: Corpo tecnopolímero, sensor cerâmico,

vedantes NBR ou VKM Ligação: Rosca GAS 1/4", 1/2"

Modelo com conector ou cabo integrado Fluído: Ar, água, gás, vapor, gasolina, meios

agressivos

Compensação automática do SPAN e OFFSET com

as variações de temperatura

Compatibilidade Electromagnética EMI

Protecção: IP65

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: NBR: -10 a +90 °C, FKM: -10 a +140

Gama de Pressões: -1 a 400 Barg

Gama de Saídas: 4-20mA, 0-10VDC, 0,5-4,5VDC Alimentação Eléctrica: 5VDC, 9-35VDC, 12-35VDC

OPCÕES

Certificação ATEX

SONDA DE TEMPERATURA

TRANSMISSORES E INDICADORES DE PRESSÃO E TEMPERATURA

TERMÓMETRO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria têxtil, alimentar, química,

farmacêutica e outras

Material Corpo: PVC, Aço Carbono ou Aço Inox

Diâmetro: 1/4", 1/2"

Ligação: Roscada ou Flangeada

Montagem: horizontal, vertical ou axial (ângulo

ajustável)

Versão: bimetálica, com expansão de líquido e

com expansão de gás

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -200 a 700°C

OPÇÕES

Indicação digital com registador Certificação ATEX

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: PVC, Aço Carbono ou Aço Inox Material Flutuador: Aço Inox, PVC, PP, PVDF, PTFE

Diâmetro: 1/4" a 3"

Ligação: Roscada ou Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: 60°C Pressão máx.: -1 a 600 Bar

OPÇÕES

Secções de maior dimensão Contactos elétricos de nível Max. e Min. Reguláveis, atuados por campo magnético.

MANÓMETRO

CONTROLO DE NÍVEL E FLUXO

SENSOR DE NÍVEL MAGNÉTICO FIG. EG-11

CARACTERÍSTICAS TÉCNICAS

Aplicações: Construção naval, Resíduos / Tanques de água pura, Indústria alimentar, Tanques de ácido, Tanques de combustível, Industria química e tanques petroquímica Material: Haste e flutuador em Aço Inox, Flange em Aço Carbono.

Ligação: Flangeada DN100

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: 150°C Pressão Max.serviço: 16 bar Voltagem: 180-230V-50Hz

OPÇÕES

Flange em Aço Inox Display e Painel de Controlo

CARACTERÍSTICAS TÉCNICAS

Aplicações: Controlo de nível em depósitos de água industrial limpa, suja, com sólidos ou com turbulência.

Material: Moplen moldado numa única peça Comprimento do Cabo: 10mt em PVC

Grau de proteção IP68

Comutador de acionamento eléctrico de 10A e 250V

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 60°C

Pressão Máx.serviço: 10bar Profundidade Max.: 100mt

INTERRUPTOR DE NÍVEL ELECTROMECÂNICO FIG. A95B

CONTROLO DE NÍVEL E FLUXO

INDICADOR DE NÍVEL DE REFLEXÃO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indicação de nível em caldeiras, depósitos de água, condensados, e outros. Material: ASTM A105 ou AISI316L Diâmetro: DN15 a DN25 Ligação: Flangeada ou roscada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: 300°C Pressão Max.serviço: 150 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transmissão de pressão submerssível para informação do nível de fluido Corpo em aço inox com vários tipos de diâmetros Ligação por cabo com comprimento variável Aplicável a vários tipos de fluidos Certificação IP 68 Certificação ATEX

CONDIÇÕES DE FUNCIONAMENTO

Gama de pressão: 40 mbar a 60 bar Sinal de saída: 4...20 mA, 0...5 V, 0...10 V Precisão: = 0.2% a 0.5%

OPÇÕES

Integração de sonda de temperatura Pt 100 / Pt 1000

TRANSMISSOR DE NÍVEL SUBMERSSÍVEL

INDICADOR DE NÍVEL MAGNÉTICO FIG. MG33

CARACTERÍSTICAS TÉCNICAS

Aplicações: Controlo de nível em caldeiras, depósitos de água, condensados, combustíveis, produtos químicos, GPL, aplicações marítimas. Material: Todos os componentes em contacto com o fluido em Aço Inox AISI316.

Diâmetro: DN15 a DN25 Ligação: Flangeada

Ligação de purga/limpeza: BSP 3/4"

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: 160°C Pressão Máx. serviço: 16 bar

OPÇÕES

Comprimento entre 300 e 5000mm Sensor de nível biestável

CARACTERÍSTICAS TÉCNICAS

Aplicações: Controlo de nível em caldeiras, depósitos de água, produtos químicos e aplicações marítimas.

Material: Todos os componentes em contacto com o fluido em Aço Inox AISI316 ou PTFE.

Diâmetro: roscada 1" DIN ISO 228/1 ou Flangeada DN 50 DIN2635 PN40

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx.: 238°C Pressão Máx. serviço: 32 bar

Alimentação eléctrica: 230Vac 50/60Hz, 110Vac

50/60Hz, 24Vac 50/60Hz

Contactos eléctricos de saída: 3 contactos secos

livres de potencial

OPÇÕES

Comprimentos: 500, 1000 ou 1500mm

CONTROLADOR DE NÍVEL DE 4 ELECTRODOS FIG. ELK-4/4F

CONTROLO DE NÍVEL E FLUXO

FLUXOSTÁTO FIG. AK-100

CARACTERÍSTICAS TÉCNICAS

Aplicações: Controlador de fluxo em sistemas de ar condicionado, linhas de aquecimento ou arrefecimento e circuitos de óleo.

Material: Palhetas em Aço Inox AISI316 e restantes elementos em contacto com o fluido em latão.

Ligação: Roscada BSP 1" Micro switches 15 (8) A-220V

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -30°C a +120°C Pressão Máx.serviço: 11 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: monitorização e indicação do nível de líquidos, controlo de bombas, sistemas de alarme, automação

Versão em miniatura do interruptor de nível magnético

Requer pouco espaço de montagem Montagem horizontal lateral nos depósitos Versão em aço inoxidável ou plástico Rosca para montagem desde o exterior ou interior do depósito

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40 a +120 °C Pressão Máx.: 5 bar

OPÇÕES

Ficha DIN ou cabo com comprimento variável Certificação ATEX

INTERRUPTOR DE NÍVEL MINIATURA

INTERRUPTOR DE NÍVEL MONTAGEM HORIZONTAL FIG. C2

MAYVAZ

CARACTERÍSTICAS TÉCNICAS

Aplicações: Controlo de nível em depósitos de água, condensados, combustíveis, produtos químicos e águas residuais.

Material: Flutuador em Aço Inox AISI316 e restantes elementos em contacto com o fluido

Ligação: Roscada BSP 1"

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +150°C Pressão Máx. serviço: 6 bar

Micro switches: 16A (Normalmente Aberto ou

Fechado)

CARACTERÍSTICAS TÉCNICAS

Aplicações: Controlo de nível em depósitos de água, condensados, combustíveis, produtos químicos, águas residuais e construção naval. Material: Todos os componentes em contacto com o fluido em Aço Inox AISI316.

Protecção: IP55

Ligação: Flangeada 94x94x15mm

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +150°C Pressão Máx. serviço: 6 / 16 bar

Micro switches 16A (Normalmente Aberto ou

Fechado)

INTERRUPTOR DE NÍVEL **MONTAGEM HORIZONTAL FIG. C4**

CONTROLO DE NÍVEL E FLUXO

CAUDALÍMETRO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: PVC, Aço Carbono ou Aço Inox Material Flutuador: Aço Inox, PVC, PP, PVDF, PTFE

Diâmetro: 1/4" a 3"

Ligação: Roscada ou Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: 60°C Pressão máx.: 16Bar

OPÇÕES

Secções de maior dimensão Contactos elétricos de nível Max. e Min. Reguláveis, atuados por campo magnético.

CARACTERÍSTICAS TÉCNICAS

Áreas de aplicação: Construção naval, Resíduos / tanques de água pura, Indústria de alimentar, Tanques de ácido, Tanques de combustível, Indústria química e tanques de petroquímica Material: Haste e flutuador em Aço Inox AISI 304 Ligação: Roscada a 3/8"

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max. Permissível: $-10 / +125 \,^{\circ}\text{C}$ Max. Interruptor de Voltagem: $400 \,\text{VAC} / \text{DC}$ Contatos tipos N.O. (Normalmente Aberto), C.O. (Change Over)

Pressão Max.: 16 bar

Densidade Mínima: 0,8 kg/m³

OPÇÕES

Comprimento: entre 100 e 700 mm

INTERRUPTOR DE NÍVEL MONTAGEM VERTICAL FIG. AU-21

CONTADORES

CONTADOR DE VAPOR

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria têxtil, alimentar, química, farmacêutica e outras Medição volumétrica e de massa, densidade e temperatura de alta precisão Compensação interna da temperatura para o vapor saturado Ajuste de flexibilidade para melhoria da precisão em todas as condições operacionais Correção em tempo real do número de Reynolds e correção para efeitos de tubulação Filtragem adaptativa para rejeição de ruído a taxas de fluxo variáveis Corte automático de baixo fluxo Ajustável para condições de operação específicas para melhor desempenho Arranque e operação simples, tecnologia de fácil configuração

Diâmetro: DN20 a DN200 Ligação: Flangeada ou tipo wafer

OPÇÕES

Visualização local ou remota Saída por impulsos, saída analógica 4..20mA e/ ou comunicação por protocolo HART Registador gráfico com porta de comunicação

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: até 430°C Pressão: PN16 a PN100

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: Latão ou Ferro fundido

Diâmetro: DN15 - DN200

Ligação: Roscada de 1/2" a 2" ou Flangeada de 2" a 8"

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: Água fria 0°C a 30°C ou Água quente

30°C a 90°C

Pressão máx.: 16Bar

OPÇÕES

Secções de maior dimensão Equipado com emissor de impulsos

CONTADOR DE ÁGUA

O vapor de água é usado amplamente nos processos industriais sendo um elemento excelente no transporte e transmissão de calor. Quando entrega a sua energia térmica, o vapor muda de estado, formando os condensados.

Os purgadores são elementos essenciais nas linhas de vapor uma vez que têm como função eliminar os condensados para que o vapor, na sua máxima temperatura, possa dar o maior rendimento térmico nos sistemas implantados.

A escolha do tipo de purgador a aplicar (bóia, termodinâmico, termostático, bimetálico, balde invertido) deverá ser feita tendo em consideração as características particulares de cada processo, optimizando o resultado da sua aplicação.

É essencial uma análise periódica do estado de funcionamento dos purgadores de modo à redução das perdas energéticas e evitando prejuízos nos tempos dos processos de fabrico.

PURGADORES

PURGADOR DE BOIA FIG. SK-51

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Autoclaves, Tanques de Aquecimento, Permutadores, Secadores e Fornos Material: Corpo GGG40.3, interiores em Aço Inox AISI 304

Diâmetro: 1/2" — 1"

Possibilidade de montagem na posição horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 16 bar Temperatura máx. de serviço TMO: 250°C Pressão máx. diferencial: 4,5 / 10 / 14 Bar

OPÇÕES

Ligação: roscada ou flangeada

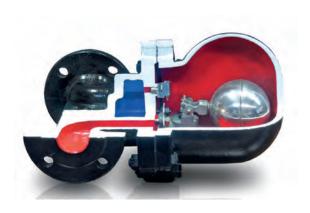
CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Autoclaves, Tanques de Aquecimento, Permutadores, Secadores e Fornos Material: Corpo GGG40.3, interiores em Aço Inox AISI 304 Diâmetro: 1" — 2" Montagem na posição horizontal

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 16 bar Temperatura máx. de serviço TMO: 250°C Pressão máx. diferencial: 4,5 / 10 / 14 Bar

OPÇÕES


Ligação: roscada ou flangeada

PURGADOR DE BOIA FIG. SK-50

PURGADOR DE BOIA FIG. SK-80

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Autoclaves, Tanques de Aquecimento, Permutadores, Secadores e Fornos

Material: Corpo GGG40.3, interiores em Aço Inox

AISI 304

Diâmetro: 1" - 2" Ligação: Flangeada

Possibilidade de montagem na posição horizontal

ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 16 bar Temperatura máx. de serviço TMO: 250°C Pressão máx. diferencial: 4,5 / 10 / 14 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Autoclaves, Tanques de Aquecimento, Permutadores, Secadores e Fornos. Material: Corpo e interiores em Aço Inox AISI 304 Diâmetro: 1/2" — 1" Possibilidade de montagem na posição horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 25 bar Temperatura máx. de serviço TMO: 250°C Pressão máx. diferencial: 4,5 / 10 / 14 Bar

OPÇÕES

Ligação: roscada ou flangeada Visor integrado

PURGADOR DE BOIA FIG. SK-61

PURGADORES

PURGADOR DE BOIA COM VISOR FIG. SK-70

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Autoclaves, Tanques de Aquecimento, Permutadores, Secadores e Fornos Material: Corpo GGG40.3, interiores em Aço Inox AISI 304 Visor integrado Diâmetro: 1/2" — 1" Possibilidade de montagem na posição horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 25 bar Temperatura máx. de serviço TMO: 250°C Pressão máx. diferencial: 4,5 / 10 / 14 Bar

OPÇÕES

Ligação: roscada ou flangeada

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Autoclaves, Tanques de Aquecimento, Permutadores, Secadores e Fornos Material: Corpo GGG40.3, interiores em Aço Inox AISI 304 Diâmetro: 1.1/4" — 2" Montagem na posição horizontal

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 16 bar Temperatura máx. de serviço TMO: 250°C Pressão máx. diferencial: 4,5 / 10 / 14 Bar

OPÇÕES

Ligação: roscada ou flangeada

PURGADOR DE BOIA COM VISOR FIG. SK-55

PURGADOR DE BALDE INVERTIDO **FIG. BT-16**

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Linhas de Traçagem, Autoclaves, Secadores e Aplicações

Marítimas.

Material: Corpo GGG40.3 e interiores em Aço Inox

AISI 304

Diâmetro: 1/2" - 1" Ligação: roscada

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 16 bar Temperatura máx. de serviço TMO: 220°C Pressão máx. diferencial: 5,4 / 8,5 / 15,5 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em linhas principais de Vapor, prensas, ferros de passar e aplicações marítimas.

Material: Corpo e interiores em Aço Inox AISI 304

Diâmetro: 1/2" - 1" Ligação: roscado

Montagem na posição horizontal

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 63 Bar Pressão máx. de serviço: 42 Bar Temperatura máx. de serviço TMO: 400°C

PURGADOR TERMODINÂMICO COM FILTRO FIG. TDK-71

PURGADORES

PURGADOR BIMETÁLICO FIG. TK-1

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Linhas de Traçagem, Secadores e Aplicações Marítimas Material: Corpo em aço forjado e interiores em Aço Inox AISI 304 Diâmetro: 1/2" — 2"

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 40 Bar Pressão máx. de serviço: 32 Bar Pressão máx. diferencial: 22 Bar Temperatura máx. de serviço TMO: 400°C

OPÇÕES

Ligação: roscada, flangeada ou para soldar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Linhas de Traçagem, Autoclaves, Ferros de passar, Prensas Material: Corpo em aço forjado e interiores em Aço Inox AISI 304 e termostato em Hastelloy Filtro integrado Diâmetro: 1/2"-1" Montagem horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 40 Bar Pressão máx. de serviço: 32 Bar Pressão máx. diferencial: 22 Bar Temperatura máx. de serviço TMO: 250°C

OPÇÕES

Ligação: roscada, flangeada ou para soldar

PURGADOR TERMOSTÁTICO FIG. TKK-2Y

PURGADOR TERMOSTÁTICO FIG. TKK-21

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Linhas de traçagem, Autoclaves, Ferros de passar, Prensas Material: Corpo em aço forjado e interiores em Aço Inox AISI 304 e termostato em Hastelloy

Diâmetro: 3/8" – 1/2" Ligação: roscada

Montagem horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 40 Bar Pressão máx. de serviço: 32 Bar Pressão máx. diferencial: 21 Bar

Temperatura máx. de serviço TMO: 250°C

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Linhas Principais de Vapor, Autoclaves, Ferros de passar, Secadores e Aplicações Marítimas Material: Corpo, filtro e sede em Aço Inox AISI 304, termostato em Hastelloy Diâmetro: 1/4" — 1" Ligação: roscada Montagem horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 55 Bar Pressão máx. de serviço: 45 Bar Pressão máx. diferencial: 21 Bar Temperatura máx. de serviço TMO: 250°C

PURGADOR TERMOSTÁTICO FIG. TKK-42

PURGADORES

PURGADOR TERMOSTÁTICO COM 3 TERMOSTATOS FIG. TKK-3

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em Linhas de Traçagem, Secadores e Aplicações Marítimas com grande concentração de condensados Material: Corpo em aço forjado e interiores em

Aço Inox AISI 304 Diâmetro: 1/2" – 2"

Montagem horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 40 Bar Pressão máx. de serviço: 32 Bar Pressão máx. diferencial: 22 Bar Temperatura máx. de serviço TMO: 250°C

OPÇÕES

Ligação: roscada ou flangeada

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de condensados em linhas de vapor com grande concentração de condensados Material: Corpo GG-25, interiores em Aço Inox AISI 304 e termostato em Hasteloy/Aço Inox

Diâmetro: 2" – 4" Ligação: flangeada Montagem na nosici

Montagem na posição horizontal

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 25 Bar Pressão máx. de serviço: 21 Bar Pressão máx. diferencial: 14 Bar

Temperatura máx. de serviço TMO: 250°C

PURGADOR TERMOSTÁTICO ALTA CAPACIDADE FIG. HK-23

OUEBRA-VÁCUO FIG. VK-70 / 71

CARACTERÍSTICAS TÉCNICAS

Eliminador de vácuo para aplicações gerais em sistemas de condensação de vapor ou de líquidos

Material: Aço Inox AISI 304 (VK71) / Latão (VK70)

Diâmetro: 1/2" Ligação: roscada

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 16 Bar Pressão máx. de teste hidráulico a frio: 24 Bar Temperatura máx. permitida TMA: 260°C

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de ar e condensado em linhas de Vapor.

Material: Corpo em latão, interiores em Aço Inox

AISI 304, termostato em Hastelloy

Diâmetro: 1/4" - 1/2" Ligação: roscada

Montagem na posição horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 16 Bar Pressão máx. de serviço: 10 Bar Pressão máx. diferencial: 7 Bar

Temperatura máx. de serviço TMO: 150°C

ELIMINADOR DE AR FIG. TKK-11

PURGADORES

ELIMINADOR DE AR FIG. TKK-61

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de ar e condensado em linhas

de Vapor

Material: Corpo em latão, interiores em Aço Inox

AISI 304, termostato em Hastelloy

Diâmetro: 1/2" Ligação: roscada

Montagem na posição horizontal ou vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. permitida PMA: 16 Bar Pressão máx. de serviço: 10 Bar Pressão máx. diferencial: 7 Bar

Temperatura máx. de serviço TMO: 150°C

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de ar e gases em linhas de Água quente, fria e outros líquidos Material: Corpo GGG40.3, interiores em Aço Inox AISI 304

Diâmetro: 1/2" - 2"

Monagem na posição horizontal

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 16 bar Pressão máx. diferencial: 6 Bar Temperatura máx. de serviço TMO: 250°C

OPÇÕES

Ligação: roscada ou flangeada

ELIMINADOR DE AR FIG. HA-50/51

ELIMINADOR DE AR FIG. HA-52/62

CARACTERÍSTICAS TÉCNICAS

Aplicações: Purga de ar e gases em linhas de Água quente, fria e outros líquidos Material: Corpo em GGG40.3 ou Aço Inox AISI316, interiores e flutuador em Aço Inox AISI 304, termostato em Hastelloy Diâmetro: ³/₄" x 1/2" Ligação: roscada

Montagem na posição vertical

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 16 bar Pressão máx. diferencial: 14 Bar Temperatura máx. de serviço TMO: 200°C

OPÇÕES

Ligação: roscada ou flangeada

CARACTERÍSTICAS TÉCNICAS

Aplicações: Eliminação de condensado em linhas de Ar ou Gás

Material: Corpo GGG40.3 ou GSC25, interiores em

Aço Inox AISI 304 Diâmetro: 1/2" – 2"

Montagem na posição horizontal

CONDIÇÕES DE FUNCIONAMENTO

Pressão máx. de serviço PMO: 16 bar Pressão máx. diferencial: 4,5 / 10 / 14 Bar Temperatura máx. de serviço TMO: 250°C

OPÇÕES

Ligação: roscada ou flangeada

ELIMINADOR DE LIQUIDOS FIG. SA-50/51

PURGADORES

SEPARADOR DE VAPOR / CONDENSADOS FIG. SCV/SCA

CONFLOW

CARACTERÍSTICAS TÉCNICAS

Aplicação: Remoção da água suspensa no vapor (condensados) para tubagens de elevado comprimento, perto dos geradores de vapor, antes dos postos redutores e premutadores de calor

Utilização de parede interna em forma de deflexão

Concebido em conformidade com a Directiva PED 2014/68 / UE

CONDIÇÕES DE FUNCIONAMENTO

Diâmetros: DN15 a DN250 Caudal: 10 a 900 m3/h

Pressão nominal: PN6, PN16 e PN40 Gama de temperaturas: 165 a 204,4 °C

OPÇÕES

Pode ser projetado de acordo com o código ASME VIII div. 1 ou AD2000

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linha de condensados em tubagens

de vapor

Material: Fundição GGG 40.3 Diâmetro: DN15 a DN50 Ligação: Roscado

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: Máx.240 °C Pressão Máx.serviço: 14 bar

INDICADOR / TESTE DE PURGADOR

VÁLVULA DE TESTE DE PURGADOR FIG. KTV-10

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linha de condensados em tubagens

de vapor

Material Corpo: ASTM A351-CF8M Material Esfera: ASTM A351-CF8M

Material Vedação: PTFE Diâmetro: DN15 a DN50 Ligação: Roscada ou Flangeada Actuação: Manual com alavanca

Sistema de bloqueio

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: Máx.320 °C Pressão Máx.serviço: 40 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Linha de condensados em tubagens

de vapor

Material Corpo: Aço Carbono Forjado

Ligação: Roscada

Equipado com válvulas de corte tipo pistão

Actuação: Manual com volante Montagem na posição vertical

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: Máx.315 °C Pressão Máx. serviço: 32 bar

MANIFOLD PARA CONDENSADOS FIG. KT-13

pretendemos utilizar nos processos industriais, permitindo eliminar os elementos e as partículas cuja existência poderão danificar as máquinas e os equipamentos e contribuir para a diminuição da rentabilidade global dos processos em causa.

Deste modo, a escolha do tipo de filtro deverá ser feita em função do tipo do fluído, das condições de serviço e do objectivo da sua aplicação.

FILTROS

FILTRO TIPO "Y" EM BRONZE FIG. 6095

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redes de distribuição de água, ar,

vapor, óleo e produtos químicos

Material Corpo: Bronze

Material Elemento Filtrante: Aço Inox

Diâmetro: DN10 — DN100 Ligação: Roscado

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Max.: 110°C Pressão máx.: 16Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Elemento Filtrante: AISI316

Diâmetro: DN8 — DN80 Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 800W0G

OPÇÕES

Roscada NPT

FILTRO TIPO "Y" EM AÇO INOX FIG. 2049

FILTRO TIPO "Y" EM AÇO INOX FIG. 2049F

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: ASTM A351-CF8M Material Elemento Filtrante: AISI304

Diâmetro: DN15 - DN300 Ligação: Flangeado PN16/40

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 800W0G

OPÇÕES

Flangeado ANSI150/300# Material corpo: ASTM A216-WCB

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redes de distribuição de água, ar,

vapor, óleo e produtos químicos

Material Corpo: GG25

Material Elemento Filtrante: AISI304

Diâmetro: DN15 — DN300 Ligação: Flangeado PN16

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +300°C Pressão máx.: 16Bar

FILTRO TIPO "Y" EM FERRO FUNDIDO FIG. PTY-20

FILTROS

FILTRO TIPO "Y" PN25 FIG. 266/25

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redes de distribuição de água, ar,

vapor, óleo e produtos químicos Material Corpo: EN-GJS-400-18-LT Material Elemento Filtrante: AlSI304

Diâmetro: DN15 — DN300 Ligação: Flangeado PN25

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10°C a +350°C Pressão máx.: 25Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material: Aço Inox AISI304 ou AISI316

Diâmetro: DN8 — DN100 Ligação: Roscada BSP

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C

FILTRO DE ASPIRAÇÃO EM AÇO INOX

VISORES

VISOR DE FLUXO EM BRONZE

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras Material Corpo: Bronze Diâmetro: DN15 — DN50 Ligação: Roscada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +250°C Pressão máx.: 16 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Indústria alimentar, química, têxtil,

farmacêutica e outras

Material Corpo: Ferro fundido ou Aço Inox AISI316

Diâmetro: DN15 — DN100 Ligação: Roscada ou Flangeada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -20°C a +200°C Pressão máx.: 16 Bar

VISOR DE FLUXO EM FF / INOX

As uniões rotativas permitem a passagem de um fluído (ar, gás, água, vapor, óleo) ou sinal eléctrico entre uma parte de uma máquina ou equipamento na sua posição estática para outra parte que se encontra numa posição móvel. Existe uma vasta gama de modelos de uniões rotativas para todos os tipos de fluidos, pressões de trabalho, temperaturas, velocidades de rotação e aplicamse em todas as industrias (têxtil, papel, cerâmica, química, farmacêutica, gráfica, máquinas ferramentas, etc).

UNIÕES ROTATIVAS

UNIÃO ROTATIVA SÉRIE DP

0.132 A S

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas

rotativos

Latão ou Aço inox Dimensões: 1/4" a 2.1/2"

Ligações: Roscada NPT/G Direita/Esquerda ou

Flangeada

Rolamentos lubrificados de fábrica de baixa

fricção

Junta deslizante despressurizada

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: Máximo 120°C Pressão Serviço: Máximo 10 Bar

Fluido: Ar, Água de refrigeração, Água quente

Velocidade: Máximo 55 000/DN

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas rotativos.

Material do corpo: Fundição dúctil, rotor e tampa

em aço

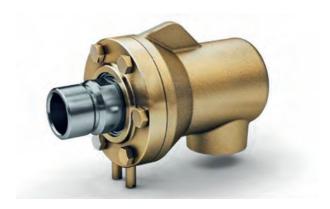
Dimensões: 1/2" a 4"

Ligações: Roscada NPT/G Direita/Esquerda ou

Flangeada

Mola em aço inox resistente a altas temperaturas. Vedante em carvão grafitado.

CONDIÇÕES DE FUNCIONAMENTO


Temperatura de trabalho: Máximo 220°C

Pressão Serviço: Máximo 20 Bar

Fluido: Água, Vapor

Velocidade: Máximo 50 000 (DNxPN)

UNIÃO ROTATIVA SÉRIE H

UNIÃO ROTATIVA SÉRIE HW

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas

rotativos

Material do corpo: Fundição dúctil até DN100

superior em aço

Rotor em aço inox AISI316 ou aço carbono

recoberto de metal duro Dimensões: 1/2" a 12"

Ligações: Roscada NPT/G Direita/Esquerda ou

Flangeada

Vedante de metal impregnado adequado para

grandes pressões.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: Máximo 300°C Pressão Serviço: Máximo 10 Bar

Fluido: Vapor, Óleo Térmico

Velocidade: Máximo 100 000 (DNxPN)

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas

rotativos

Material do corpo: Fundição

Rotor em aço inox AISI316 ou aço carbono

recoberto de metal duro Dimensões: 1" a 6" Ligações: Flangeada

Separação do ar atmosférico do Óleo Térmico

assegurada.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: Máximo 400°C

Pressão Serviço: Máximo 13 Bar

Fluido: Óleo Térmico

Velocidade: Máximo 130 000 (DN)

UNIÃO ROTATIVA SÉRIE DQ

UNIÕES ROTATIVAS

UNIÃO ROTATIVA SÉRIE DX

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas

rotativos

Material do corpo: Latão Rotor em Aço cromado. Dimensões: 3/8" a 6"

Ligações: Roscada NPT ou G Direita/Esquerda ou

Flangeada

Empanque mecânico compacto.

Dois rolamentos lubrificados de fábrica e sem

manutenção até 80°C.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: Máximo 160°C Pressão Serviço: Máximo 16 Bar

Fluido: Água

Velocidade: Máximo 55 000 (DN)

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas

rotativos.

Material do corpo: Fundição Rotor em Aço cromado Dimensões: 2" a 12" Ligações: Flangeada

Jogo de empanque em carvão grafitado com

impregnação de metal

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: -30°C E 320°C Pressão Serviço: 0,8 E 40 Bar Fluido: Água, Vapor e Óleo Térmico Velocidade: Máximo 100 000 (DNxPN)

UNIÃO ROTATIVA SÉRIE DA

UNIÃO ROTATIVA SÉRIE MP

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas

rotativos.

Material do corpo: Latão, Alumínio, Aço ou Aço

Inox

Rotor em Aço Inox. Dimensões: 1/4" a 1"

Ligações: Rosca G ou NPT a pedido

Numero de canais: 2 a 10.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: Máx. 80°C Pressão Serviço: Água, e Ar 10 Bar - Óleo

Hidráulico: 200 Bar

Fluido: Água, Ar e Óleo Hidráulico

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas rotativos de máquinas ferramenta.

Tipo de fluido: lubrificante de arrefecimento e ar Gama completa de modelos de uniões rotativas e alternativas de sistemas de vedação para adequação aos requisitos individuais da aplicação

Séries disponíveis: K, KL e KS Dimensões: DN4 a DN10

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho Máx.: 50°C Pressão de trabalho: PN70 a PN150 Velocidade Máx.: 10.000 a 42.000 rpm

OPÇÕES

Versão com tecnoclogia TESS (patente MAIER): vedantes com controlo de temperatura permitindo o funcionamento sem fluido (por tempo limitado)

UNIÃO ROTATIVA SÉRIE K

UNIÕES ROTATIVAS

UNIÃO ROTATIVA SÉRIE M

CARACTERÍSTICAS TÉCNICAS

Aplicações: Transferência de fluidos em sistemas

rotativos.

Material do corpo: Fundição.

Rotor em Aço com proteção anticorrosiva.

Dimensões: 1/2" a 4"

Ligações: Roscada NPT ou G Direita/Esquerda ou

Flangeada

Jogo de empanque com impregnação de teflon.

Modelo Ideal para fluidos altamente

contaminados.

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: -15°C $\stackrel{\circ}{\epsilon}$ 160°C

Pressão Serviço: 0,2 & 20 Bar

Fluido: Água, Vapor

Velocidade: Máximo 16 000 (DN)

CARACTERÍSTICAS TÉCNICAS

Aplicações: Refrigeração de uma ou mais Uniões Rotativas.

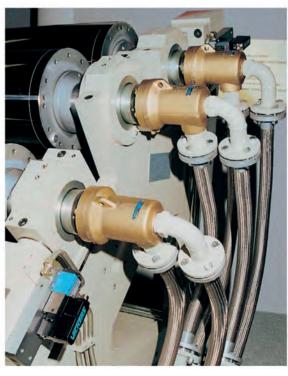
Componentes: Bomba com motor, filtro, Indicador de nível, controlador temperatura, indicador temperatura do óleo, tubos de ligação Capacidade da bomba: 8, 16 ou 28I/min Capacidade de arrefecimento Kw: 8(KE) & 20(KEW)

Capacidade do tanque: 35 L

UNIDADE DE REFRIGERAÇÃO DE UNIÃO ROTATIVA SÉRIE KE/KEW

UNIÕES ROTATIVAS COM CERTIFICAÇÃO ATEX

CARACTERÍSTICAS TÉCNICAS


Certificação ATEX segundo a regulamentação 2014 / 34 / EU

Ensaiado e inscrito na TÜV SÜD Series HWA, HWB, HWX:

- Aplicações: Linhas de água, vapor e óleo térmico
- Diâmetro: DN 15 100
- Certificação ATEX: II 3G b T3 X, II 2G b T3 X, II 3G c T xx X, II 2G b T xx X (xx = temperatura do fluido) Series DQ, DQT:
- Aplicações: Linhas de óleo térmico
- Diâmetro: DN 25 150
- Certificação ATEX: II 3G c T xx X, II 2G b T xx X (xx
- = temperatura do fluido) Series DX, DXS:
- Aplicações: Linhas de água e água glicolada
- Diâmetro: DN 10 150
- Certificação ATEX: II 2G c T3 X Series DP, DPN:
- Aplicações: Linhas de água, água glicolada, ar e óleo térmico
- Diâmetro: DN 6 100
- Certificação ATEX: II 2G c T3 X

EXEMPLOS DE APLICAÇÕES

As electroválvulas, também conhecidas por válvulas solenóide, permitem o controlo de inúmeros tipos de fluídos em sistemas de controlo de água, ar, gases, vapor, combustíveis, químicos, área farmaceutica, área alimentar, máquinas de vending, máquinas de café, carwash.

De acordo com o desenho da sua construção, podem ser classificadas em electroválvulas de acção directa, indirecta ou combinada, podendo ser de duas, três, cinco ou mais vias, conforme a necessidade.

Recorrendo a diversos tipos de materiais e processos de fabrico é possível satisfazer as mais elevadas exigências de todos os sectores industriais com certificações adequadas às mais exigentes aplicações, da área alimentar (NSF), dos processos que envolvam oxigénio (02), quando devam ser assegurados padrões eléctricos e electromagnéticos (UL, VDE) e utilização em zonas ATEX (Ex).

ELECTROVÁLVULAS 2 VIAS

ELECTROVÁLVULA 2 VIAS ACÇÃO INDIRECTA — SÉRIE 21W

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, elevados níveis de fluxos, instalação em qualquer posição

Material: Corpo em Latão Diâmetro: 3/8" — 2" Ligação: Rosca GAS

Normalmente Fechada e Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: EPDM (água, vapor de baixa pressão), NBR (ar, gases intertes, água), FKM (óleo

mineral, gasolina, gás)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: 16 bar Pressão Mín.: 0,2 bar

OPÇÕES

Versão ATEX Ex nA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Aquecimento, automação, não

necessita de pressão mínima Material: Corpo Latão Diâmetro: 1/4" — 1 1/2" Ligação: Rosca GAS

Normalmente Fechada e Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: EPDM (água, vapor de baixa pressão), NBR (ar, gases intertes, água), FKM (óleo

mineral, gasolina, gás)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: 16 bar Pressão Mín.: 0 bar Potência: 8, 12 e 14 watt

OPÇÕES

Versão ATEX Ex nA

ELECTROVÁLVULA 2 VIAS ACÇÃO COMBINADA – SÉRIE 21HT / 21HF

ELECTROVÁLVULA 2 VIAS ACÇÃO COMBINADA – SÉRIE 21H (VERSÃO COMPACTA)

CARACTERÍSTICAS TÉCNICAS

Aplicações: Aquecimento, automação, versão

compacta

Material: Corpo Latão Diâmetro: 1/4" – 3/4" Ligação: Rosca GAS Normalmente Fechada Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: EPDM (água, vapor de baixa pressão), NBR (ar, gases intertes, água), FKM (óleo

mineral, gasolina, gás)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: 20 bar Pressão Mín.: 0 bar

OPÇÕES

Versão ATEX Ex nA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Aquecimento, Água Quente, Vapor

Material: Corpo Latão Diâmetro: 1/2" — 1" Ligação: Rosca GAS

Normalmente Fechada e Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: PTFE (vapor, água quente, produtos

químicos compatíveis com o latão)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C Pressão Máx.: 10 bar Pressão Mín.: 0,9 bar

OPÇÕES

Versão ATEX Ex nA

ELECTROVÁLVULA 2 VIAS ACÇÃO INDIRECTA — SÉRIE 21YW

ELECTROVÁLVULAS 2 VIAS

ELECTROVÁLVULA 2 VIAS ACÇÃO DIRECTA - SÉRIE 21A

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento

Material: Corpo Latão Diâmetro: 1/8" — 1/2" Ligação: Rosca GAS ou flange Normalmente Fechada e Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65 / IP67 (com kit anti-humidade) Vedação: EPDM (água, vapor de baixa pressão), NBR (ar, gases intertes, água), FKM (óleo mineral, gasolina, gás), PTFE (vapor, água

quente), Ruby

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C Pressão Máx.: até 40 bar Pressão Mín.: 0 bar

OPÇÕES

Versão ATEX Ex nA, Ex m, Ex d.

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento, regulação

de fluxo de vapor Material: Corpo Latão Diâmetro: 1/4" Ligação: Rosca GAS Normalmente Fechada Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: PTFE (vapor, água quente)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C Pressão Máx.: até 14 bar Pressão Mín.: 0 bar

ELECTROVÁLVULA 2 VIAS ACÇÃO DIRECTA - SÉRIE 21A16

ELECTROVÁLVULA 2 VIAS ACÇÃO DIRECTA - SÉRIE 21JN (LATÃO) / JL (INOX)

CARACTERÍSTICAS TÉCNICAS

Aplicações: Aquecimento, automação, vácuo, vending, química

Material: Corpo Latão / Aço Inox AISI316, Interior

em Aço Inox Diâmetro: 1/8" — 1/2" (para conexão roscada) Ligação: Rosca GAS, RSP, NPT, Flangeada, M5

Ligação: Rosca GAS, BSP, NPT, Flangeada, M5 Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: EPDM (água, vapor), NBR (ar, gases intertes, água), FKM (óleo mineral, gasolina,

gás

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a 80 °C Pressão Máx.: 40 bar Pressão Mín.: 0 bar

OPÇÕES

Versão ATEX Ex nA Aprovação NSF

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento

Material: Corpo Aço Inox AISI316, Interior em Aço

Inox

Diâmetro: 1/4" Ligação: Rosca GAS

Normalmente Fechada e Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65 / IP67 (com kit anti-humidade) Vedação: FKM (óleo mineral, gasolina, gás)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 ℃ Pressão Máxima: até 150 bar Pressão Mínima: 0 bar

OPÇÕES

Versão ATEX Ex nA, Ex m, Ex d.

ELECTROVÁLVULA 2 VIAS ACÇÃO DIRECTA - SÉRIE 21L INOX

ELECTROVÁLVULAS 2 VIAS

ELECTROVÁLVULA 2 VIAS ACÇÃO COMBINADA – SÉRIE 21 IH INOX

CARACTERÍSTICAS TÉCNICAS

Aplicações: Aquecimento, automação, fluidos agressivos, não necessita de pressão mínima Material: Corpo Aço Inox AISI316, Interior em Aço

Inox

Diâmetro: 3/8" — 1 1/2" Ligação: Rosca GAS Normalmente Fechada Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: FKM (óleo mineral, gasolina, gás, vapor

a pressão reduzida)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: 16 bar Pressão Mín.: 0 bar

OPÇÕES

Versão ATEX Ex nA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Aquecimento, automação, vapor,

química, altas temperaturas

Material: Corpo Aço Inox AISI316, Interior em Aço

Inox

Diâmetro: 1/2" — 1" Ligação: Rosca GAS Normalmente Fechada Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: PTFE (vapor, água quente, produtos químicos compatíveis com o aço inox)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C Pressão Máx.: 20 bar Pressão Mín.: 0,1 / 0,5 bar

OPÇÕES

Versão ATEX Ex nA

ELECTROVÁLVULA 2 VIAS ACÇÃO INDIRECTA - SÉRIE 21X INOX

ELECTROVÁLVULA 2 VIAS SEPARAÇÃO TOTAL - SÉRIO 21KP

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, Vending, Carwash

Material: PSU (Polysulphone)

Diâmetro: 1/8" Ligação: Rosca GAS

Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC Protecção: Vedação:

CONDIÇÕES DE FUNCIONAMENTO

Temperatura:

Pressão Máx.(P.S.): 8 bar Pressão M.O.P.D.: 4 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de automação para controlo de fluido proporcional ao nível de tensão eléctrica aplicada

Material: Corpo Latão Diâmetro: 1/4" Ligação: Rosca GAS Normalmente Fechada Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65 / IP67 (com kit anti-humidade)

Vedação: FKM (óleo mineral, gasolina, gas inerte)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: até 40 bar Pressão Mín.: O bar

OPÇÕES

Sistema de controlo proporcional eléctrico

ELECTROVÁLVULA 2 VIAS PROPORCIONAL - SÉRIE 21A **PROP**

ELECTROVÁLVULAS 2 VIAS

ELECTROVÁLVULA 2 VIAS ACÇÃO INDIRECTA - SÉRIE ALTA PRESSÃO 4731/4966/4592/4739

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação

Material: Corpo Latão / Aço Inox AISI316, Interior

em Aço Inox

Diâmetro: 3/8" — 1 1/2" Ligação: Rosca GAS

Normalmente Fechada e Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: PTB – Fibra de Vidro reforçada (água, ar), PTFE (ar, água), POMC (ar, gases inertes)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C Pressão Máx.: 50 a 150 bar Pressão Mín.: 3 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação

Material: Corpo Latão / Aço Inox AISI316, Interior

em Aço Inox

Diâmetro: Flange, Rosca 1/4" Ligação: Flange, Rosca GAS

Normalmente Fechada e Aberta (modelo com

flange)

Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: PTFE (ar, água, vapor: modelo com

flange)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -40 a +180 °C Pressão Máx.: 100 bar Pressão Mín.: 0 bar

ELECTROVÁLVULA 2 VIAS ALTA PRESSÃO ACÇÃO DIRECTA -SÉRIE 21A

ELECTROVÁLVULAS 3 VIAS

ELECTROVÁLVULA 3 VIAS ACÇÃO DIRECTA - SÉRIE 31A / 31JN -LATÃO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento

Material: Corpo Aço Inox AISI316, Interior em Aço Inox

Diâmetro e ligação: Flange (31ALB), rosca GAS 1/4" (31L)

Normalmente Fechada ou Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65/ IP67 (série 31ALB com kit antihumidade)

Vedação: NBR (ar, gases inertes, água), FKM (óleo mineral, gasolina, gás)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C (dependendo do

vedante)

Pressão Máxima: até 40 bar Pressão Mínima: 0 bar

OPÇÕES

Versão ATEX Ex nA, Ex m, Ex d

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento

Material: Corpo Latão

Diâmetro e ligação: Flange (série 31A1), rosca

1/8" – 1/4" (restantes séries)

Normalmente Aberta (série 31A1) Fechada

(todas as séries)

Alimentação Eléctrica da Bobine:

12/24/48/110/230V AC/DC

Protecção: IP65 / IP67 (com kit anti-humidade na

série 31A

Vedação: NBR (ar, gases intertes, água), FKM (óleo mineral, gasolina, gás), PTFE (vapor, água quente), Ruby

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C (dependendo do

vedante)

Pressão Máx.: até 40 bar Pressão Mín.: 0 bar

OPÇÕES

Versão ATEX Ex nA, Ex m, Ex d.

ELECTROVÁLVULA 3 VIAS ACÇÃO DIRECTA - SÉRIE 31ALB / 31L -INOX

ELECTROVÁLVULAS 3 VIAS

ELECTROVÁLVULA 3 VIAS - SÉRIE 31APB / 31JP – PPS

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento
Material: Corpo tecnopolímero PPS
Diâmetro e ligação: Flange (31APB), rosca GAS
1/8" (31JP)
Normalmente Fechada
Alimentação Eléctrica da Bobine:
12/24/48/110/230V AC/DC
Protecção: IP65/ IP67 (série 31APB com kit antihumidade)
Vedação: NBR (ar, gases inertes, água), FKM
(óleo mineral, gasolina, gás), Ruby

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C (dependendo do vedante e da série)
Pressão Máxima: até 16 bar

Pressão Máxima: até 16 bar Pressão Mínima: 0 bar

OPÇÕES

Certificação alimentar NSF

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, Vending, Carwash

Material: PSU (Polysulphone)

Diâmetro: 1/8"
Ligação: Rosca GAS
Alimentação Eléctrica da Bobine:
12/24/48/110/230V AC/DC
Vedação: VQM (Silicone)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: +2 a +100 °C Pressão Máx.(P.S.): 8 bar Pressão M.O.P.D.: 4 bar

ELECTROVÁLVULA 3 VIAS SEPARAÇÃO TOTAL SÉRIE 31KP

ELECTROVÁLVULAS MODULARES

ELECTROVÁLVULA 2 VIAS ACÇÃO INDIRECTA - SÉRIE 4743 / 5116

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, Carwash

Material: Corpo Latão / Aço Inox AISI316, Interior

em Aço Inox

Diâmetro: 1/2" / Flange

Ligação: Rosca GAS, Flangeada, com ou sem

válvula de retenção

Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65 Vedação: FKM (água)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: 16 bar Pressão Mín.: 0,1 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, Vending

Material: Corpo Tecnopolímero - Certificação NSF

Diâmetro: 1/8"

Ligação: Roscada, ligação rápida ou para tubo

6mm

Normalmente Fechada

Alimentação Eléctrica da Bobine:

24/48/110/230V AC/DC

Protecção: IP65Vedação: NBR ou FKM (ar, água,

gás inerte, vapor baixa pressão)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: até 16 bar Pressão Mín.: 0 bar

ELECTROVÁLVULA 2 VIAS ACÇÃO DIRECTA MODULAR - SÉRIE JM — CERTIFICAÇÃO NSF

ELECTROVÁLVULAS COM CERTIFICAÇÃO ESPECIAL

ELECTROVÁLVULA 3 VIAS – SÉRIE 31AP – CERTIFICAÇÃO NSF

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento

Material: Corpo Tecnopolimero – Certificação NSF

Diâmetro: 1/8", 1/4" Ligação: Rosca GAS Normalmente Fechada Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65 Vedação: FKM (ar, água, vapor baixa pressão),

Ruby

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +180 °C (dependendo do

vedante)

Pressão Máx.: 16 / 25 bar Pressão Mín.: 0 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, aquecimento

Material: Corpo Tecnopolimero - Certificação NSF

Diâmetro: 1/8"

Ligação: Rosca GAS Macho ou Fêmea Normalmente Fechada e Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

Protecção: IP65

Vedação: FKM (ar, água, gás inerte, vapor baixa

pressão)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Máx.: até 15 bar Pressão Mín.: 0 bar

ELECTROVÁLVULA 2 VIAS - SÉRIE 21APB / 21JP — CERTIFICAÇÃO NSF

ELECTROVÁLVULA 2 E 3 VIAS -SÉRIE OX – CERTIFICAÇÃO PARA OXIGÉNIO

■ **※**

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação, Vending Material: Corpo latão ou aço inox

Diâmetros: 1/8" a 2" Ligação: Roscada

Normalmente Aberta ou Fechada Alimentação Eléctrica da Bobine: 24/48/110/230V AC/DC Protecção: IP65Vedação: FKM

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +60 °C Pressão Máx.: até 16 bar Pressão Mín.: 0 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Ar, química, automação industrial, medicina, água, tratamento de água, petroquímica Ambientes potencialmente explosivos Ex nA:

- Bobine séries BDV, GDV e LBV
- Grau de proteção IP65 EN 60529 (DIN 40050)
- Em conformidade com a Directiva 94/9 / CE ATEX: Il 3G Ex nA IIC T3 Gc / Il 3D Ex tc IHC T200 $^{\circ}$ C Dc IP65

Ambientes potencialmente explosivos Ex mb II T4:

- Bobine/conector série TNA
- Grau de proteção IP65 EN 60529 (DIN 40050)
- Em conformidade com a Directiva 94/9 / CE ATEX: Il 2G Ex mb IIC Gb / II 2D Ex mb tb IIIC t130°C Db Ambientes potencialmente explosivos Ex d:
- Electroválvula 2/2, 3/2 e 5/2 vias com bobine instalada em caixa à prova de explosão Ex d
- Em conformidade com a Directiva 94/9 / CE ATEX: II 2G Ex d IIC T6 o T5 Gb / II 2D Ex tb IIIC T80°C o T90°C Db IP67

CONDIÇÕES DE FUNCIONAMENTO

Tolerância da tensão nominal: +/- 10% Pressão de serviço: até 40 bar

ELECTROVÁLVULA 2/2, 3/2 e 5/2 VIAS- SÉRIE EXna EXm e EXd — CERTIFICAÇÃO ATEX

ELECTROVÁLVULAS PARA GÁS

ELECTROVÁLVULA NORMALMENTE ABERTA PARA GÁS - SÉRIE MD01-03-04

CARACTERÍSTICAS TÉCNICAS

Tipo de válvula : Combustível de gás válvulas solenoides

Este tipo de electroválvula actua apenas sob tensão com rearme manual.

Material do corpo: Classe de alumínio Funcionamento da válvula : Ação Direta Conexões : 1/2", 3/4", 1", 11/4", 1 1/2", 2"

Normalmente Aberta

CONDIÇÕES DE FUNCIONAMENTO

Pressão máxima de serviço: 1Bar. Proteção: IP 65 • Alimentação de tolerância de tensão -15% + 10% Temperatura ambiente -15 ° C +60 ° C

Temperatura máxima superficial: 70 ° C De acordo com a Directiva 94/9 / CE ATEX De acordo com o 2004/108 / EC (Compatibilidade Eletromagnética)

De acordo com o 2006/95 / EC (Low Voltage) Alimentação Eléctrica: 12/24/110/230V AC/DC

CARACTERÍSTICAS TÉCNICAS

Este tipo de electroválvula actua sempre e apenas sob tensão para se manter aberta; não é necessário intervenção porque rearma automaticamente

Conexões : 1/2", 3/4", 1", 11/4", 1 1/2", 2" Material do corpo: Classe de alumínio Funcionamento da válvula : Ação Direta Tipo de válvula : Combustível de gás válvulas

solenoides

CONDIÇÕES DE FUNCIONAMENTO

Pressão máxima de serviço: 1 bar. Alimentação de tolerância de tensão -15% + 10% Temperatura ambiente: -15 °C + 60 °C Temperatura máxima superficial: 70 °C De acordo com a Directiva 94/9 / CE ATEX De acordo com o 2004/108 / EC (Compatibilidade Eletromagnética)

De acordo com o 2006/95 / EC (Low Voltage) Alimentação Eléctrica: 12/24/110/230V AC/DC

ELECTROVÁLVULAS COM REARME AUTOMÁTICO PARA GÁS - SÉRIE MD21-22-23-24

ELECTROVÁLVULAS NORMALMENTE FECHADAS PARA GÁS - SÉRIE MD11-12-13

CARACTERÍSTICAS TÉCNICAS

Este tipo de electroválvula actua sempre e apenas sob tensão com rearme manual. Material do corpo: Classe de alumínio Conexões : 1/2", 3/4", 1", 11/4", $1^{-1/2}$ ", 2" Funcionamento da válvula : Ação Direta Tipo de válvula : Combustível de gás válvulas

solenoides Proteção: IP 65

CONDIÇÕES DE FUNCIONAMENTO

Pressão máxima de serviço 1Bar.
Alimentação de tolerância de tensão -15% + 10%
Temperatura ambiente -15 °C + 60 °C
Temperatura máxima superficial: 70 °C
De acordo com a Directiva 94/9 / CE ATEX
De acordo com o 2004/108 / EC (Compatibilidade Eletromagnética)
De acordo com o 2006/95 / EC (Low Voltage)

De acordo com o 2006/95 / EC [Low Voltage] Alimentação Eléctrica: 12/24/110/230V AC/DC

BOMBAS SOLENÓIDE

CARACTERÍSTICAS TÉCNICAS

Aplicações: Máquinas de Café, Vending, Ferros de Vapor

Material: Corpo tecnopolímero, Interior em Aço

Inox, Vedantes NBR

Ligação: Saída Rosca GAS 1/8" Fluído: Água Potável e Destilada Certificação: CE / NSF / UL / VDE

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +35 °C

Pressão Máx.: 16 Bar (PX50), 20 Bar (TP400) Alimentação Eléctrica: 120 VAC/60Hz, 220-240

VAC/50Hz

BOMBAS SOLENOIDE / VIBRAÇÃO - PHOENIX SÉRIE PX50 / TP400

OUTROS PRODUTOS

KIT ANTI-HUMIDADE

CARACTERÍSTICAS TÉCNICAS

Kit composto por peças de vedação antihumidade para a bobine Permite aumentar o índice de protecção da bobine para IP67 Aplicável às bobines das séries B, G, S e U

CARACTERÍSTICAS TÉCNICAS

Aplicações: Máquinas de Café Material: PBT 30%GF

Ligação: Tubo 6mm Fluído: Água Potável

Certificação: CE / NSF / UL / VDE

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +65 °C Pressão : -1 a 0,3 bar

Alimentação Eléctrica: 4.5 – 24VDC

MEDIDOR DE FLUXO SÉRIE TAB32

ELECTROVÁLVULA COM TEMPORIZADOR PROGRAMÁVEL

CARACTERÍSTICAS TÉCNICAS

Aplicações: Automação , redes de ar e de

aquecimento

Material: Latão - UNI EN 12164 CW614N

Ligação: Roscada 1/2"

Fluído: Água, Gás Inerte, Oleos Minerais, Gasolina,

e outros. Protecção: IP65

Vedação: FKM (ar, água, gás inerte, vapor baixa

pressão)

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 a +140 °C Pressão Max.: 40bar

Alimentação Eléctrica: 24/48/110/230V AC/DC

CARACTERÍSTICAS TÉCNICAS

Válvula de separação total

Aplicações: Máquinas de café, vending, produtos

químicos e médicos.

Material: Corpo alumínio anodizado Normalmente Fechada ou Aberta Alimentação Eléctrica da Bobine: 12/24/48/110/230V AC/DC

CONDIÇÕES DE FUNCIONAMENTO

Força de aperto: até 36 kg

Temperatura ambiente: -10 a +40 °C

Protecção IP65

OPÇÕES

Aplicação em diferentes diâmetros de tubos

ELECTROVÁLVULAS TIPO "PINCH"

OUTROS PRODUTOS

TEMPORIZADOR ANALÓGICO

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de drenagem de condensado sistemas temporizados. Controlador plug-on projetado para válvulas de drenagem e sistemas de automação Montagem e ajuste de tempo simplificados Tempo de ON e OFF ajustáveis LEDs de indicação de estado Botão para teste e reinicio de ciclo Aprovações: EAC (Eurasian Customs Union) e reconhecimento UL

CONDIÇÕES DE FUNCIONAMENTO

Tensão de alimentação: 24 to 240V AC/DC \pm 10%

50/60Hz

Temperatura de operação: -10°C +50°C

Tempo ON: 0.5 a 10 segundos Tempo OFF: 0.5 a 45 minutos

CARACTERÍSTICAS TÉCNICAS

Conectores para as bobines das Séries BD, GD,

UD, HD, LB

Material: PA (Poliamida)

Vedação: NBR

Standard: EN 175301-803 Número de contactos: 2 + Terra

Secção máxima dos condutores: 1,5 mm2 Diâmetro do cabo: PG 09 (6 a 8 mm) Índice de protecção: IP65 / IP67

Classe de isolamento: DIN EN 60664-1, VDE 0110-1

CONDIÇÕES DE FUNCIONAMENTO

Tensão Eléctrica Máx.: 250V AC/DC

Corrente Nominal: 10 A Corrente Máx.: 16 A

Gama de temperatura: -40 a +90°C

Modelo com cabo eléctrico incluído (corpo do conector em PP: Polipropileno)

CONECTORES PARA AS BOBINES

BOBINES SÉRIE B / G / U / L

CARACTERÍSTICAS TÉCNICAS

Tensão de Alimentação AC: 12 / 24 / 48 / 110-120 /220-240/380VAC

Tensão de Alimentação DC: 12 / 24 / 48 V DC Frequência da tensão de alimentação: 50 / 60 Hz Gama de potências: 5 a 14 W / 10 a 27 VA

Índice de protecção: IP 65 EN 60529 (DIN 40050)

Aprovação: CE / UL / CSA / VDE

CONDIÇÕES DE FUNCIONAMENTO

Tolerâncias tensão de alimentação AC: -15% a

+10% (mediante modelo)

Tolerâncias tensão de alimentação DC: -5% a

+10% (mediante modelo)

Temperatura ambiente: -20 a +180°C (mediante modelo)

OPÇÕES

Aprovação ATEX Ex mB / Ex nA

APPROVALS

POWER	5 W - 10 VA	7 W -11,5 VA 12,5 XX-13,5 AV	8 W - 14,5 VA	10 W	11W -15 VA 16 VA - 17 VA	12 W - 22 VA ED 50%	12 W - 23 VA 25 VA	14 W - 23 VA 26 VA - 27 VA	CE	⟨€x⟩	<i>FL</i> :	c 91 .us		c FII us
Width	22 mm	22 mm	30 mm	22 mm	30 mm2	8 mm	36 mm	52 mm						
BDA			CONNECTOR EN 175301-803						Х					
BDV					CONNECTOR EN 175301-803				Х					(1)
BSA			CABLES 100 cm						Х					
BVA			CABLES 50 cm						Х					
GDH								CONNECTOR EN 175301-803	Х					
GDV								CONNECTOR EN 175301-803	X					(1)
ICA						FASTON DIN 46244								
LBA	CONNECTOR EN 175301-803					-			X					
LBF	CONNECTOR EN 175301-803								X		(3)			
LBV		CONNECTOR EN 175301-803		CONNECTOR EN 175301-803					X		(3)(2)	(4)(1)
TNA	See coils list								X	(5)				
UDA							CONNECTOR EN 175301-803		Χ					
UDV									Х			(2)		

- (1) Available also with UL, CSA, VDE approval. (2) For some voltages UL ,CSA approval available. (3) For some voltages UL approval available.

- (4)F or some voltages VDE approval available.
- (5) Approval Ex mb IIT 4

 The catalogue images are purely for information.

Os equipamentos onde exista movimento, vibrações, variações de pressão (por impulsos), ou onde ocorram variações de temperatura que provoquem dilatações e contracções térmicas dos materiais, podem originar rupturas nas tubagens.

Quando esse movimento ou variação de dimensão não é possível ser absorvido pela tubagem ou equipamento, o ideal será instalar um compensador de dilatação, uma junta antivibrática, ou um tubo flexível.

A escolha do modelo apropriado, e o seu correcto dimensionamento basear-se-á nas condições específicas de cada aplicação.

COMPENSADORES DE DILATAÇÃO _ _ JUNTAS VIBRÁTICAS ANTIELÁSTICAS LIGAÇÕES
FLEXÍVEIS
FLEXIVEIS

COMPENSADORES DE DILATAÇÃO

COMPENSADOR DILATAÇÃO AXIAL FIG. MWA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos axiais em redes de fluidos.

Material do fole e camisa interior: Aço inox Material das extremidades: Aço Inox ou Aço Carbana

Movimentos Axiais: 12mm a 150mm Ligações: Extremidades Para Soldar

Dimensões: 1/2" a 240"

CONDIÇÕES DE FUNCIONAMENTO

Pressão Nominal: PN1 a PN40

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos axiais em redes de fluidos.

Material do fole e camisa interior: Aço inox Material das extremidades: Aço Inox ou Aço Carbono

Movimentos Axiais: 12mm a 150mm Ligações: Com Flanges Fixas ou Giratórias

Dimensões: 1/2" a 240"

CONDIÇÕES DE FUNCIONAMENTO

Pressão Nominal: PN1 a PN40

COMPENSADOR DILATAÇÃO AXIAL FIG. MFA/G

COMPENSADOR DILATAÇÃO AXIAL FIG. MTE/MTI

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos axiais em redes de fluidos.

Material do fole e camisa interior: Aço inox Material das extremidades: Aço Inox ou Aço Carbono

Movimentos Axiais: 12mm a 150mm

Ligações: Extremidades Roscadas Internamente

ou Exteriormente. Dimensões: 1/2" a 240"

CONDIÇÕES DE FUNCIONAMENTO

Pressão Nominal: PN1 a PN40

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos axiais, laterais e angulares em redes de fluidos. Material do fole e camisa interior: Aço inox Material das extremidades: Aço Inox ou Aço Carbono

Movimentos Axiais, Laterais ou Angulares Ligações: Extremidades para Soldar ou Flangeadas

Dimensões: 1/2" a 240"

CONDIÇÕES DE FUNCIONAMENTO

Pressão Nominal: PN1

COMPENSADOR DILATAÇÃO AXIAL FIG. MWD/MFD

COMPENSADORES DE DILATAÇÃO

COMPENSADOR DILATAÇÃO AXIAL FIG. MWL/MFL

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos axiais, laterais e angulares em redes de fluidos. Material do fole e camisa interior: Aço inox Material das extremidades: Aço Inox ou Aço

Movimentos Axiais, Laterais ou Angulares Ligações: Extremidades para Soldar ou

Flangeadas

Dimensões: 1/2" a 128"

CONDIÇÕES DE FUNCIONAMENTO

Pressão Nominal: PN2.5 a PN40

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos angulares num único plano, restringe forças de impulso de pressão, Transmite cargas de cisalhamento e vento e não necessita de âncoras principais.

Material do fole: Aço Inox

Material das extremidades: Aço Inox ou Aço

Ligações: Extremidades para Soldar ou

Flangeadas.

Dimensões: 1/2" a 128"

CONDIÇÕES DE FUNCIONAMENTO

Pressão Nominal: PN1 a PN40

COMPENSADOR DILATAÇÃO ANGULAR FIG. MWP / MFP

COMPENSADOR DILATAÇÃO ENCAMISADO FIG. MJA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos axiais em redes de fluidos.

Material do fole interior e exterior e camisa: Aço

Material das extremidades: Aço Inox ou Aço

Carbono

Movimentos Axiais: 12mm a 150mm Ligações: Extremidades Para Soldar ou

Flangeadas.

Dimensões: DN50 A DN10000

CONDIÇÕES DE FUNCIONAMENTO

Pressão Nominal: PN1 a PN40

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção de movimentos axiais em rede de fluidos.

Material do fole e camisa interior: Aço inox Material das extremidades: Aço Inox ou Aço Carbono

Movimentos Axiais

Ligações: Extremidades para Soldar ou Flangeadas

COMPENSADOR DILATAÇÃO AXIAL FIG. MRU/MRW/MRV

JUNTAS ELÁSTICAS ANTIVIBRÁTICAS

JUNTA ELÁSTICA ANTIVIBRÁTICA ROSCADA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção e recuperação de deformações em rede de fluidos.

Material do fole : EPDM

Material das extremidades: Aço Galvanizado

Diâmetro: 3/4" a 3"

Pressão Máx. Serviço: 10 Bar. Depressão Máx. Serviço: -0,5 Bar Temperatura Serviço: -10°C + 105°C

Ligações: Extremidades Roscadas DIN2999

CARACTERÍSTICAS TÉCNICAS

Aplicações: Absorção e recuperação de deformações em rede de fluidos.

Material do fole: EPDM, BUTILO, HYPALON,

NEOPRENE, NITRILO

Material das extremidades: Aço Galvanizado ou

Aço Inox

Diâmetro: DN32 a DN500 Pressão Máx. Serviço: 10 Bar Depressão Máx. Serviço: -0,5 Bar Temperatura Serviço: -10°C + 105°C

Ligações: Extremidades Flangeadas DIN2501

PN10

JUNTA ELÁSTICA ANTIVIBRÁTICA FLANGEADA

TUBOS FLEXÍVEIS •

TUBO FLEXÍVEL INOX COM MALHA EXTERIOR

CARACTERÍSTICAS TÉCNICAS

Aplicações: Ligações flexíveis para linhas de fluídos de elevada exigência. Material do tubo flexível: Aço inox AISI316L Material da malha exterior: Aço Inox AISI304 Dimensões: DN8 — DN150

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: -196°C a + 800°C Pressão Máx.serviço: 64 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Ligações flexíveis para linhas de fluídos de elevada exigência. Material do tubo flexível: Aço inox AISI316L Material da malha exterior: Aço Inox AISI304 Dimensões: DN8 — DN150

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: -196°C a + 800°C Pressão Máx.serviço: 64 bar

OPÇÕES

Ligações: Roscadas, Para Soldar ou Flangeadas

TUBO INOX FLEXIVEL COM MALHA EXTERIOR COM CONEXÕES ROSCADAS, FLANGEADAS, OU PARA SOLDAR

TUBOS FLEXÍVEIS •

TUBO FLEXIVEL INOX - KIT PARA ÁGUA KES-TAK

CARACTERÍSTICAS TÉCNICAS

Aplicações: Ligações flexíveis para linhas de água domésticas.

Material do tubo flexível: Aço inox AISI316L Material dos acessórios: Fêmea em latão niquelado, anilha inox AISI304 e junta em cartão

Dimensões: 3/8" - 2"

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: Máximo 150°C Pressão de serviço: Máximo 6, 10 ou 16 bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de aquecimento a energia

Material do tubo flexivel: Aço inox AISI316L Material do revestimento: EPDM/Poliamida

Cabo de Sensor: Silicone

Espessura do revestimento: 9mm/13mm/19mm

Dimensões: DN12 - DN25

CONDIÇÕES DE FUNCIONAMENTO

Temperatura de trabalho: Máximo 150°C

TUBO FLEXIVEL INOX PARA ENERGIA SOLAR EZ-FLEX

TUBO FLEXIVEL INOX P/ GAS GASFLEX

CARACTERÍSTICAS TÉCNICAS

Aplicações: Sistemas de gás natural e GLP Principais vantagens:

- Fácil instalação com seu corpo flexível e acessórios roscados
- Baixo custo de instalação
- Instalação fácil e rápida
- Elevada vida útil
- Design flexível e fiável Materiais:
- Mangueira: Aço inoxidável AISI 316L
- Conexões: Aço carbono ou aço inoxidável
- Aperto (shrink): Termoplástico com base em poliolefina (Opcional)

Conexão: Racords e Nipples

Diâmetro nominal: DN 12, DN 16, DN 20 / 1/2", 1/2"x3/4", 3/4"

CARACTERÍSTICAS TÉCNICAS

Área de Aplicação: Sistemas de pulverização de água para combate ao incêndio em todos os tipos de edifícios públicos ou privados.
As mangueiras de aspersão são usados para ligar os aspersores (sprinklers) e as tubagens de água para o combate ao incêndio.
Vantagens: A estrutura flexível dos tubos de aspersão reduz os tempos de montagem e manutenção e absorve os movimentos sísmicos. Materiais:

- Mangueira: Aço inoxidável AISI 316L
- Braid: aço inoxidável AISI 304
- Conexões: Aço carbono / Aço inoxidável Conexão do lado da tubagem principal: Nipple Conexão do lado do sprinkler: Peças especiais roscadas para sprinklers Peças de fixação das tubagens: Aço carbono Diâmetro da mangueira: DN25 (1") Raio de curvatura: Mín. 200mm Aprovação FM, Vsd, UL

CONDIÇÕES DE FUNCIONAMENTO

Pressão de trabalho: Até 16 Bar

TUBO FLEXIVEL INOX COM CONEXÕES P/ SPRINKLER

MATERIAIS DE REVESTIMENTO E SELAGEM

FITAS DE REVESTIMENTO DE ROLOS

CARACTERÍSTICAS TÉCNICAS

Fitas de qualidade superior em borracha natural, sintética, PVC, Silicone, Nylon, Cortiça, Lã e Metálica

Temperaturas de serviço Max.: 200°C Larguras disponíveis: 50/70/100mm Disponíveis em auto adesiva ou simples

CARACTERÍSTICAS TÉCNICAS

Empanques convencionais de cordão indicados para vedações em válvulas, bombas, reatores e outros equipamentos nos mais variados segmentos industriais.

Aplicações: derivados de petróleo, solventes, água, vapor saturado e produtos químicos em geral

Secções: Quadrada ou redonda.

Construção entrelaçada proporcionando um empanque mais homogêneo, mais facilmente moldável, maior resistência mecânica e menor desgaste por abrasão.

EMPANQUES EM CORDÃO

PTFE EXPANDIDO

CARACTERÍSTICAS TÉCNICAS

Teflon em placa ou fita auto adesiva Temperaturas de serviço: -240°C a +310°C Resistência Química: pH 0-14 Resistência Pressão: 200Bar Aprovações: BAM, DVGW, WRC, BOC, FDA, TA-Luft, AREVA

CARACTERÍSTICAS TÉCNICAS

Telas com elevada resistência a altas temperaturas, antiaderente, boa resistência mecânica e química e também por um excelente comportamento dieléctrico.

Aplicações: Tapetes transportadores, revestimento de rolos e tambores texteis, máquinas de selagem, vedações e juntas para alta temperatura.


Temperatura Max.: 260°C

Espessuras Disponíveis: 0,003", 0.005", 0.006" e 0.010".

OPÇÕES

Outras larguras e espessuras Tapetes transportadores à medida Disponíveis com ou sem adesivo

TELA FIBRA DE VIDRO IMPREGNADA A PTFE

MATERIAIS DE REVESTIMENTO E SELAGEM

PTFE VIRGEM OU GRAFITADO (15% Graf.)

fluorseals

CARACTERÍSTICAS TÉCNICAS

Teflon em placa, varão e tubo
Temperaturas de serviço: -200°C a +260°C
Resistência Química: pH 0-14
Aprovações: FDA
Baixo índice de tração

OPÇÕES

Alteração da cor do produto final Composição de PTFE virgem com Fibra de Vidro, Fibra de Carbono, Cerâmica, Bronze, Peek, Inox e outras.

Possibilidade de fabrico de produto acabado.

CARACTERÍSTICAS TÉCNICAS

Placas de cartões indicadas para o fabrico de juntas de vedação nos mais variados segmentos industriais.

Aplicações: derivados de petróleo, solventes, água, vapor saturado e produtos químicos em geral

Dimensão das Placas: 1500x1600mm Espessuras Disponíveis: Desde 0,5 a 5mm

OPÇÕES

Dimensão das Placas: 1500x3200mm Outras espessuras Disponíveis com ou sem tela metálica

CARTÃO PARA JUNTAS

ISOLAMENTO TÉRMICO FLEXÍVEL TIPO "JACKETS" PARA VÁLVULAS E FILTROS

CARACTERÍSTICAS TÉCNICAS

Aplicação: Bombas, tubagens, condutas, permutadores de calor, turbinas, instrumentação, exaustores, filtros, flanges, entre outros Isolamento térmico projectado e fabricado para todas as necessidades e tipos de equipamentos Totalmente confeccionados e customizados de acordo com as condições de serviço, tipo de aplicação e respectivas normas técnicas Colocação e remoção do isolamento térmico facilitadas sem recurso a ferramentas e permitindo a sua reutilização Facilita a manutenção dos equipamentos e cistomas

Permite a instalação em ambientes e condições mais severas

Conservação de energia térmica em sistemas de alta e baixa temperaturas

CARACTERÍSTICAS TÉCNICAS

Áreas de Aplicação: Linhas de água quente, condutas de vapor, indústria de petróleo, plataformas petroquímicas, refinarias, plataformas de processamento de gás LNG, GPL, Etileno

Equipamentos a isolar: Válvulas de globo, válvulas de cunha, válvulas de borboleta, válvulas de macho esférico, filtros Dimensões: DN 25 - DN300 Material do tecido, costuras e cordas: Fibra de vidro

CONDIÇÕES DE FUNCIONAMENTO

Temperatura Máx. de Operação: 650°C (Pyrogel XT/XTF)
Temperatura Miníma de Operação: -270°C (Cryogel X201)

OPÇÕES

Material de Isolamento: Pyrogel XT/XTF (0.021 W/mK) ou Cryogel X201 (0.015 W/mK) Espessura do Isolamento: 5mm ou 10mm

ISOLAMENTO TÉRMICO FLEXÍVEL TIPO "JACKETS" PARA OUTROS EQUIPAMENTOS

comprimento de haste, diâmetro de hélices, sendo estas configurações

especificadas pelos produtos a agitar.

BOMBAS E AGITADORES

BOMBA CENTRÍFUGA AXIAL SÉRIE IPA - ITALVALVOLE

CARACTERÍSTICAS TÉCNICAS

Bombas destinadas a fluidos do Grupo 2 (directiva 97/23 EPC). Para fluidos do grupo 1 (directiva 97/23 EPC) contactar departamento técnico.

Material: Todos os componentes em contacto com o fluido em Aço Inox AISI316, FPM e Grafite

Caudal Máximo: 400 l/min Motor: Eléctrico trifásico Protecção: IP55

Ligações: Rosca GAS, Flange Plana PN6, PN10 e

PN16

Elevada resistência a agentes corrosivos

Não necessita de manutenção

Modelos: IPA1, IPA2, IPA3, IPA4, IPA5, IPA6, IPA7

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0 a 140 °C

Alimentação: 220/380V, 50-60Hz

CARACTERÍSTICAS TÉCNICAS

Ideal para o funcionamento contínuo em condições ambientais adversas

Material: Todos os componentes em contacto com o fluido em Aço Inox AISI316, FPM e Grafite.

Motor: Eléctrico trifásico Protecção: IP55 Ligação: Flangeada Potência: 0,3 – 3 cv

Nº de Polos: 4, 6 e 8 Não necessita manutenção, excepto os modelos

de grande capacidade

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: -10 (fase líquida) a 80 °C Alimentação: 220/380V, 50-60Hz

AGITADORES DE IMERSÃO SÉRIE IMF/IMM - ITALVALVOLE

BOMBA DE DOSAGEM SERIE RB

CARACTERÍSTICAS TÉCNICAS

As bombas da série RB são bombas doseadoras de deslocamento fixo.

Aplicação: utilização em vários campos onde é necessária uma dose constante e específico de produto (área química, tingimento, etc.)
Material: aço inoxidável; as partes em contato com fluidos usados são AISI 316, FPM, PTFE / grafite (materiais que fazem a bomba adequado para ser utilizado comfluidos quimicamente agressivos).- Ligação mecânica: conexão roscada GAS

CARACTERÍSTICAS TÉCNICAS

As Centrais Hidropressoras referem-se a um conjunto de equipamentos que incluem electrobombas projectadas para o fornecimento de água (geralmente limpa) em instalações industriais e em edifícios de acordo com condições pretendidas para o caudal e a pressão.

Composição típica da Central Hidropressora:

- Duas ou mais electrobombas
- Depósito de expansão (autoclave)
- Colector para as linhas de aspiração e compressão
- Conjunto de válvulas de retenção e seccionamento
- Manómetros e sensores de pressão (transmissores de pressão ou pressostatos)
- Quadro eléctrico de comando, protecção e alarme Vantagens da utilização de Centrais Hidropressoras:
- Sistemas compactos
- Flexibilidade na configuração e nas opções de exploração
- Economia energética elevada
- Manutenção reduzida
- Controlo de pressão constante independentemente dos consumos instantâneos
- Possibilidade de comunicação remota para comando e leitura de estados/alarmes.

CENTRAIS HIDROPRESSORAS

ACESSÓRIOS INOX

FLANGES EM ALUMINIO COM PINTURA EPOXI E COLARINHOS ESTAMPADAS EM AÇO INOX

CARACTERÍSTICAS TÉCNICAS - Flanges

Aplicações: Ligação de tubagens na indústria química, farmacêutica, alimentar, textil, papeleira, marítima, energias e outras Material: Alumínio com pintura Epoxi Diâmetro: DN15 — DN1200 Dimensões segundo norma ISO, Métricas ou para tubo PVC

CARACTERÍSTICAS TÉCNICAS - Colarinhos

Aplicações: Ligação de tubagens na indústria química, farmacêutica, alimentar, textil, papeleira, marítima, energias e outras Material: Aço Inox AISI304 ou AISI316 Diâmetro: DN15 — DN300 Dimensões segundo norma DIN2642 PN10/16 — DIN2633 PN10/16 — DIN 2527 PN10/16

CARACTERÍSTICAS TÉCNICAS

Aplicações: Tubagens para a indústria química, farmacêutica, alimentar, têxtil, papeleira, marítima, energias entre outras
Material: Aço Inox AISI 304, 304L, 316, 316L ou outras ligas
Diâmetro: DN15 — DN400
Dimensões segundo norma 3D ISO GAS 1.5D
METRIC DIN2605 / EN 10253-4 & DIN ADW2

OPÇÕES

Tubagem com ou sem costura. Acabamento polido.

TUBOS EM AÇO INOX

ACESSÓRIOS PARA SOLDAR EM AÇO INOX ISO/METRICA/ASTM

CARACTERÍSTICAS TÉCNICAS

Aplicações: Ligação de tubagens soldadas na indústria química, farmacêutica, alimentar, têxtil, papeleira, marítima, energias e outras Material: Aço Inox AISI304 ou AISI316L Diâmetro: DN15 — DN400 Dimensões segundo norma 3D ISO GAS 1.5D METRIC DIN2605 / EN 10253-4 & DIN ADW2

CARACTERÍSTICAS TÉCNICAS

Aplicações: Ligação de tubagens na indústria química, farmacêutica, alimentar, têxtil, papeleira, marítima, energias e outras Material: Aço Inox AISI304 ou AISI316 Diâmetro: DN6 — DN100 Classe 150#

ACESSÓRIOS ROSCADOS EM AÇO INOX

O efectivo controlo e extinção do incêndio requerem um entendimento da natureza química e física do fogo. O combate ao incêndio é tanto mais eficaz quanto mais cedo se actuar contra o mesmo podendo estar em causa a preservação de bens materiais e da própria vida. Por esse motivo a escolha dos meios e dos procedimentos mais apropriados é de vital importância devendo-se ter sempre em atenção a certificação dos equipamentos e o respeito pelas normativas vigentes.

EQUIPAMENTOS PARA REDES DE INCÊNCIO

VÁLVULA DE CUNHA FUSO EXTERIOR FIG. OS&Y-300FF

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de água em

redes de incêndio.

Material: Corpo em ASTM A536, 65-45-12 Material Cunha: ASTM A536, 64-45-12 & EPDM

Diâmetro: DN50 - DN300

Ligação: Flangeada ANSI B16.1 CLASS 125,

EN1092-2 PN10 ou PN16

Protecção contra a corrosão: Pintura Epoxy

conforme ANSI / AWWA C550 Certificação: ULC / FM / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C Pressão Máx.: 20,7 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de água em redes de incêndio.

Material: Corpo em ASTM A536, 65-45-12 Material Cunha: ASTM A536, 64-45-12 & EPDM

Diâmetro: DN50 - DN300

Ligação: Ranhurada metrica ou AWWA C606

Actuação: Manual com volante

Protecção contra a corrosão: Pintura Epoxy

conforme ANSI / AWWA C550 Certificação: ULC / FM / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C Pressão Máx.: 20,7 Bar

VÁLVULA DE CUNHA FUSO EXTERIOR FIG. OS&Y-300GG

CARACTERÍSTICAS TÉCNICAS

Aplicações: Anti retorno de fluidos em linhas de

Material: Corpo em ASTM A536, 65-45-12

Material Portinhola: ASTM A536, 64-45-12 / EPDM

Diâmetro: DN50 - DN300

Ligação: Flangeada ANSI B16.1 CLASS 125,

EN1092-2 PN10 ou PN16

Instalação: Vertical ou horizontal

Protecção contra a corrosão: Pintura interior e

exterior a Epoxy

Certificação: ULC / FM / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C Pressão Máx.: 20,7 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Anti retorno de fluidos em linhas de Incêndio

Material: Corpo em ASTM A536, 65-45-12 Material Portinhola: DN50 a DN100 AISI304, DN150 a DN300 ASTM A536 GR.65-45-12 / EPDM

Diâmetro: DN50 - DN300

Ligação: Ranhurada metrica ou AWWA C606

Instalação: Vertical ou horizontal

Protecção contra a corrosão: Pintura interior e

exterior a Epoxy

Certificação: ULC / FM / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C Pressão Máx.: 20,7 Bar

VÁLVULA DE RETENÇÃO FIG. AGCV

EQUIPAMENTOS PARA REDES DE INCÊNCIO

VÁLVULA DE BORBOLETA TIPO WAFER / LUG

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de água em

redes de incêndio.

Material: Corpo e disco em ASTM A536, 65-45-12

Vedação: EPDM

Diâmetro: DN50 - DN300

Ligação: Entre flanges Wafer ou Lug. Protecção contra a corrosão: Pintura Epoxy

Certificação: ULC / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C Pressão Máx.: 20,6 Bar

CARACTERÍSTICAS TÉCNICAS

Aplicações: Seccionamento de linhas de água em redes de incêndio.

Material: Corpo e disco em ASTM A536, 65-45-12

Vedação: EPDM

Diâmetro: DN50 – DN300 Ligação: Ranhurada.

Protecção contra a corrosão: Pintura Epoxy

Certificação: ULC / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C Pressão Máx.: 20,6 Bar

VÁLVULA DE BORBOLETA RANHURADA

CARACTERÍSTICAS TÉCNICAS

Aplicações: Redução de pressão em linhas de

água em redes de incêndio. Material: Corpo em ASTM A536

Diâmetro: DN40 - DN200 (Globo) e DN50 -

DN150 (Angular)

Ligação: Flangeada ou Ranhurada.

Protecção contra a corrosão: Pintura Epoxy

Certificação: ULC / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C Pressão Diferencial: 10 Psi Min.

CARACTERÍSTICAS TÉCNICAS

Aplicações: Alivio de pressão em linhas de água

em redes de incêndio.

Material: Corpo em ASTM A536 Diâmetro: DN50 – DN250 Ligação: Flangeada

Protecção contra a corrosão: Pintura Epoxy

Certificação: FM/ULC / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C

Gama de Pressão: 20-200 psi (Classe150#) -

100-300 psi (Classe 300#)

VÁLVULA ALIVIO DE PRESSÃO FIG. 50B-4KG1 / 2050B-4KG1

EQUIPAMENTOS PARA REDES DE INCÊNCIO

VÁLVULA ALIVIO DE PRESSÃO FIG. 55L

CARACTERÍSTICAS TÉCNICAS

Aplicações: Alivio de pressão em linhas de água

em redes de incêndio.

Material: Corpo em Bronze ASTM B62 – Aço inox

ASTM A743-CF-16Fa Diâmetro: DN1/2" — DN3/4"

Ligação: Roscada Certificação: FM/ULC / UL

CONDIÇÕES DE FUNCIONAMENTO

Temperatura: 0° a +80°C

Gama de Pressão: 0-75 psi - 20-200 psi - 100-

300 psi

Pressão Max.: 400 psi

CARACTERÍSTICAS TÉCNICAS

Aplicações: Detecção presença/ausência de fluxo em linhas de água em redes de incêndio (não são usados em linhas secas).

Material: Palhetas em Aço Inox AISI316 e restantes elementos em contacto com o fluido em latão.

Ligação: Roscada BSP 1" a 2", U Bolt 2" a 8" Certificação: FM / ULC / UL

CONDIÇÕES DE FUNCIONAMENTO

Pressão Máx. serviço: 250 psi Temperatura: 0°C a +49°C

Contactos eléctricos: 10 A @ 125/250V, 2.5A @

24VDC

FLUXOSTATO FIG. WFDTN

PRESSOSTATO FIG. EPS10

CARACTERÍSTICAS TÉCNICAS

Áreas de aplicação:

- Edifícios de Serviços e Residenciais
- Edifícios hospitalares e de saúde
- Unidades fabris
- Lojas e Centros Comerciais
- Unidades hoteleiras e de turismo
- Áreas de perigo baixo, médio e alto Ligação: Roscada NPT 1/2", NPT 3/4"
 Superfície: Latão, Cromada, Branca ou Preta Classe de perigo: Perigo baixo, médio e alto Certificação: FM, UL, ULC, VdS, CE

CONDIÇÕES DE FUNCIONAMENTO

Modelo Standard (bulbo de vidro com 5mm):

- K-Factor: 40.3 (2.8), 57 (4.2), 80 (5.6), 115 (8.0)
- Temperature: 57 °C, 68 °C, 79 °C, 93 °C, 141 °C, 182 °C
- Pressure Class: 175 250psi

Modelo de Resposta Rápida (bulbo de vidro com 3 mm);

- K-Factor: 40.3 (2.8), 57 (4.2), 80 (5.6), 115 (8.0)
- Temperature: 57 °C, 68 °C, 79 °C, 93 °C, 141 °C
- Classe de pressão: 175 a 250 PSI

OPÇÕES

Sprinklers de resposta standard ou rápida. Modelos para montagem na vertical ou na horizontal.

Classe de perigo: Perigo baixo, médio e alto

CARACTERÍSTICAS TÉCNICAS

Área de aplicação: Os interruptores da Série EPS10 foram projetados indicar uma descarga de um sprinkler em sistemas de sprinklers automáticos, húmidos, secos, de dilúvio ou de pré-ação.

Ligação: Roscada NPT 1/2" reforçada com nylon Certificação: FM / ULC / UL

CONDIÇÕES DE FUNCIONAMENTO

Pressão Máx. serviço: 300 psi

Ajuste máximo da faixa de pressão: 4 a 20 psi Diferencial: Aproximadamente 3 psi (em toda a gama)

Configuração de fábrica: Opera a uma pressão crescente de 4 a 8 psi

Classificações do contato do interruptor:

- EPS10-1: Um conjunto SPDT (Forma C)
- EPS10-2: Dois conjuntos SPDT (Forma C) 10,0 A, ¹/₂ H P @ 125/250 VAC, 2,5 A @ 6/12/24 VDC Faixa de temperatura operacional: Uso interno ou externo: -40°C a +71°C

SPRINKLERS

Tabela de conversão de unidades de medida

Metros Pelegadas * 25,4 mm Milmetros Milmas Milmas	GRANDEZA	PARA CONVERTER PARA OBTER	UNIDADE	Multiplicar por > Dividir por <	UNIDADE	PARA OBTER PARA CONVERTER
Commented Processors Commented Com		Metros	m	3,281	ft	Pés
AREA	COMPRIMENTO	Polegadas	и	25,4	mm	Milímetros
VILLIME VILL		Quilômetros	km	0,6214	mi	Milhas
VILLIME VILL						
VILLIME VILL	,					
PRESSAO	AREA					
Duadra Quadrada						
VOLUME			km2			
VOLUME Lines L 264 gal Galos Americanos VOLUME Lines L 0,0353 ft 3 P85 Cibicos M83 264,17 gal Galos Americanos Metros Cúbicos m3 35,11 ft 3 PRE Cúbicos M81 1000 L Litros per Mouto Litros por Segundo US 3600 Uh Litros por Segundo US 3600 Uh Litros por Minuto Litros por Minuto LUmin 0,00059 ft 37min PRE Cúbicos por Minuto LUmin 2,64 galfmin Galos por Minuto Lumin 2,64 galfmin Galos por Minuto Lumin 2,64 galfmin Galos por Minuto M81 M81 M81 M82 M82 M83 M81 M83 M87 M83 M81 M83 M81 M83 M83 M83 M81 M83 M83 M83 M83 M83 M83 M83 M83 M83 M84 M84 M84 M84 M84 M84 M84			•			
VOLUME						
VOLUME			L .			
Metros Cúbicos m3 1000	VOLUME		L			
Metros Gubicos m3	VULUME					
Litros par Segundo L/s 3.600 L/h Litros par Hora					113	
Litros por Minuto L/min 0,0353 fi.3/min Pes Cóbicos por Minuto Litros por Hora L/h 0,00059 fi.3/min Pes Cóbicos por Minuto Litros por Hora L/h 0,00059 fi.3/min Pes Cóbicos por Minuto L/min 264 gal/min Galdes por Minuto Metros Cóbicos por Hora m3/h 0,59 fi.3/min Pes Cóbicos por Minuto Metros Cóbicos por Hora m3/h 4,403 gal/min Galdes por Minuto Metros Cóbicos por Hora m3/h 1,000 L/h Litros por Hora M4/h M4/					L	
Litros por Neroa Litros por Minuto Metros Cúbicos por Hora m3/h 0,59 fi.3/min Pés Cúbicos por Minuto Metros Cúbicos por Hora m3/h 4,403 gal/min Galese por Minuto Metros Cúbicos por Hora m3/h 1,000 L/h Litros por Minuto Litros por Minuto Metros Cúbicos por Hora m3/h 1,000 L/h Litros por Hora Quilogramas por Centimento Quadrado Metros de Coluna D'agua m.c.a. 3,284 ft Pés Quilogramas por Centimento Quadrado Metros de Coluna D'agua m.c.a. 0,1 kg/cm2 Quilogramas por Centimento Quadrado Quilogramas por Libras por Polegada Quadrado Quilogramas por Centimento Quadrado Quilogramas por Centimento Quadrado Quilogramas por Centimento Quadrado Mega Pascal MPa 10,197 m.c.a. Metros de Coluna D'agu Mega Pascal MPa 10,197 m.c.a. Metros de Coluna D'agu Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centimetro Quadrado MPa 10,1971 kg/cm2 Quilogramas p						
VAZÃO Litros por Segundo US 15,85 gal/min Galdes por Minuto Litros por Minuto L/min 264 gal/min Galdes por Minuto Metros Cúbicos por Hora m3/h 0,59 13/min Pês Cúbicos por Minut Metros Cúbicos por Hora m3/h 4,403 gal/min Galdes por Minuto Metros Cúbicos por Hora m3/h 1,000 L/h Libras por Por Hora Atmos/eras atm 1,033 kg/cm2 Curliogramas por Centimetro Quadrado Metros de Coluna D'agua m.c.a 3,284 ft Pes Metros de Coluna D'agua m.c.a 0,1 kg/cm2 Centimetro Quadrado Libras por Polegada Oudradas Ub/pol2 (psi) 703 m.c.a Metros de Coluna D'agua PESSÃO Quilogramas por Centimetro Quadrado kg/cm2 14,22 lb/pol2 (psi) Libras por Polegada Quilogramas por Centimetro Quadrado kg/cm2 10 m.c.a Metros de Coluna D'agua Bar bar 10,197 m.c.a Metros de Coluna D'agua <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
Litros por Minuto						
Metros Cúbicos por Hora m3/h 0,59 ft3/min Pés Cúbicos por Minut Metros Cúbicos por Hora m3/h 4,403 gal/min Galdes por Minuto Metros Cúbicos por Hora m3/h 1,000 L/h Litros por Hora Litros por Hora Metros Cúbicos por Hora m3/h 1,000 L/h Litros por Hora Litros por Hora Metros de Coluna D'agua mc.a. 3,284 ft Pés Quilogramas por Centimetro Quadrado Quadrada lb/pol2 (psi) 703 m c.a. Metros de Coluna D'agua Centimetro Quadrado Quilogramas por Centimetro Quadrado Quilogramas por Centimetro Quadrado Quilogramas por Centimetro Quadrado Quilogramas por Centimetro Quadrado Metros de Coluna D'agua Libras por Polegada Quadrado Quilogramas por Centimetro Quadrado Mega Pascal MFa 10,197 m c.a. Metros de Coluna D'agua Mega Pascal MFa 10,197 m c.a. Metros de Coluna D'agua Mega Pascal MFa 10,1971 m c.a. Metros de Coluna D'agua Mega Pascal MFa 10,1971 Meg/cm2 Quilogramas por Centimetro Quadrado Mega Pascal MFa 10,1971 Meg/cm2 Quilogramas por Centimetro Quadrado Mega Pascal MFa 10,1971 Meg/cm2 Quilogramas por Centimetro Quadrado Mega Pascal MFa 10,1971 Meg/cm2 Quilogramas por Centimetro Quadrado Mega Pascal MFa 10,1971 Meg/cm2 Quilogramas por Centimetro Quadrado Mega Pascal MFa 10,1971 Meg/cm2 Quilogramas por Centimetro Quadrado Mega Pascal MFa 10,1971 Meg/cm2 Quilogramas por Centimetro Quadrado Metros por Segundo Mr/s 3,281 ft/s Pés por Segundo Mega Pascal MFa 10,1971 Mega Pascal Mega Pascal MFa Metros por Segundo Mr/s 3,281 ft/s Pés por Segundo Mega Pascal Me	VAZÃO					
Metros Cúbicos por Hora m3/h 1,000						
Metros Cúbicos por Hora m3/h 1,000 L/h Litros por Hora Ouilogramas por Centimetro Quadrado Metros de Coluna D'agua m.c.a. 3,284 ft Pés Metros de Coluna D'agua m.c.a. 0,1 kg/cm2 Ouilogramas por Centimetro Quadrado Ouadrada Ib/pol2 (psi) 703 m.c.a. Metros de Coluna D'agua Mega Pascal MPa 10 Metros de Coluna D'agua Mega Pascal MPa 10,197 m.c.a. Metros de Coluna D'agua Mega Pascal MPa 10,1971 Mega Pascal Metros de Coluna D'agua Mega Pascal MPa 10,1971 Mega Pascal Metros de Coluna D'agua Mega Pascal MPa 10,1971 Mega Pascal Metros de Coluna D'agua Me						
Atmosferas atm 1,033 kg/cm2 Centimetro Quadrado Metros de Coluna D'agua m.c.a. 3,284 ft Pés Pés Metros de Coluna D'agua m.c.a. 0,1 kg/cm2 Quilogramas por Centimetro Quadrado Quadrada Quadrada Quadrada Dynol2 (psi) 703 m.c.a. Metros de Coluna D'agua Metros de Coluna D'agua Metros de Coluna D'agua Metros de Coluna D'agua Libras por Polegada Quadrada Quilogramas por Centímetro Quadrado Rg/cm2 14,22 Ibb/pol2 (psi) Libras por Polegada Quadrada Quadrada Quadrada Quadrada Quadrada Quadrada Quadrada Metros de Coluna D'agua Mega Pascal MPa 10 m.c.a. Metros de Coluna D'agua Mega Pascal MPa 10,197 m.c.a. Metros de Coluna D'agua Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centímetro Quadrado Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centímetro Quadrado Quadrada Quadrada Quadrada Quadrada Quadrada Quadrada Quadrada Quadrada Quadrada Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centímetro Quadrado Quadrada Quadrada						
Metros de Coluna D'agua m.c.a. 3,284 ft Pés		Metros Lubicos por Hora	m3/h	1.000	L/h	
PRESSÃO Metros de Coluna D'agua m c.a. 0,1 kg/cm2 Quilogramas por Centimetro Quadrado Cullogramas por Centimetro Quadrado Quilogramas por Centimetro Quadrado 14,22 Ib/pol2 (psi) Libras por Polegada Quadrada Quilogramas por Centimetro Quadrado kg/cm2 10 m c.a. Metros de Coluna D'aguadrada Bar bar 10,197 m c.a. Metros de Coluna D'aguadrada Mega Pascal MPa 10,197 m c.a. Metros de Coluna D'aguadrada Mega Pascal MPa 10,197 m c.a. Metros de Coluna D'aguadrada Mega Pascal MPa 10,197 m c.a. Metros de Coluna D'aguadrada PESO Libras Lb 0,4536 kg Quilogramas por Centimetro Quadrada VELOCIDADE Metros por Segundo m/s 3,281 ft/s Pés por Segundo VELOCIDADE Metros por Minuto m/s 3,6 kg/rh Quilogramas por Centimetro Quadrada VELOCIDADE Metros por Minuto m/s 3,6 kg/rh Quilometros por Hora VELOCIDADE<						Centímetro Quadrado
PRESSÃO		Metros de Coluna D'agua	m c.a.	3,284	ft	
PRESSÃO Quadrada Oullogramas por Centímero Quadrado Centímetro Quadrado			m c.a.	0,1	kg/cm2	Quilogramas por Centímetro Quadrado
Centímetro Quadrado kg/cm2 14,22 lib/poiz (psi) Quadrada Quilogramas por Centímetro Quadrado kg/cm2 10 m c.a. Metros de Coluna D'ágo Bar bar 10,197 m c.a. Metros de Coluna D'ágo Mega Pascal MPa 10 bar Bar Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centímetro Quadrado Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centímetro Quadrado Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centímetro Quadrado PESO Libras Lb 0,4536 kg Quilogramas Metros por Segundo m/s 3,281 ft/s Pés por Segundo Metros por Segundo m/s 3,6 kg/h Quilometros por Hora Metros por Minuto m/min 0,03728 mirh Milhas por Hora Quilometros por Hora km/h 0,91134 ft/s Pés por Segundo POTÊNCIA Cavalos Vapor cv 0,7355			lb/pol2 (psi)	703	m c.a.	Metros de Coluna D'águ
PESO Centimetro Quadrado Right Discrimination Peso Pe	PRESSÃ0		kg/cm2	14,22	lb/pol2 (psi)	
Mega Pascal MPa 10 bar Bar Mega Pascal MPa 101,9716 m c.a. Metros de Coluna D'ági Mega Pascal MPa 10,1971 kg/cm2 Quilogramas por Centímetro Quadrado PESO Libras Lb 0,4536 kg Quilogramas Metros por Segundo m/s 3,281 ft/s Pés por Segundo Metros por Segundo m/s 3,6 kg/h Quilometros por Hora Metros por Segundo m/s 3,6 kg/h Quilometros por Hora Metros por Ninuto m/min 0,03728 mi/h Milhas por Hora Quilometros por Hora km/h 0,93728 mi/h Metros por Segundo Quilometros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quilowatts Cavalos Vapor cv 0,7355 kW Quilowatts POTÊNCIA Quilowatts kW 1,000 W Watts Megawatts			kg/cm2	10	m c.a.	Metros de Coluna D'águ
Mega Pascal MPa 101,9716 m.c.a. Metros de Coluna D'ágo PESO Libras Lb 0,4536 kg Quilogramas Quilogramas kg 2,2045 Lb Libras Metros por Segundo m/s 3,281 ft/s Pés por Segundo Metros por Segundo m/s 3,6 kg/h Quilómetros por Hora Metros por Minuto m/min 0,03728 mi/h Milhas por Hora Quilómetros por Hora km/h 0,91134 ft/s Pés por Segundo Metros por Hora km/h 0,27778 m/s Metros por Segundo Quilómetros por Hora km/h 0,27778 m/s Metros por Segundo POTÊNCIA Cavalos Vapor cv 0,7355 kW Quilowatts POTÊNCIA Quilowatts kW 1,000 W Watts POTÊNCIA Megawatts MW 1,000 W Watts Quilowatts kW 1,341 HP Horse Power Qui		Bar	bar	10,197	m c.a.	Metros de Coluna D'águ
PESO Libras Lb 0,4536 kg Quilogramas por Centímetro Quadrado VELOCIDADE Libras Lb 0,4536 kg Quilogramas Metros por Segundo m/s 3,281 ft/s Pés por Segundo Metros por Segundo m/s 3,6 kg/h Quilômetros por Hora Metros por Minuto m/min 0,03728 mi/h Milhas por Hora Quilômetros por Hora km/h 0,91134 ft/s Pés por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quilowatts Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1,000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h		Mega Pascal			bar	
Mega Pascal MPa 10,1971 Rg/cm2 Centímetro Quadrado PESO Libras Lb 0,4536 kg 0,2045 Lb Libras Metros por Segundo m/s 3,281 ft/s Pés por Segundo Metros por Segundo m/s 3,6 kg/h 0,0116metros por Hora km/h 0,03728 mi/h Milhas por Hora Quillowatros por Hora km/h 0,91134 ft/s Pés por Segundo Quillowetros por Hora km/h 0,91134 ft/s Pés por Segundo Quillowetros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quillowetros por Hora kW Metros por Bora kW Metros por Bora		Mega Pascal	MPa	101,9716	m c.a.	Metros de Coluna D'águ
PESO Quilogramas kg 2,2045 Lb Libras VELOCIDADE Metros por Segundo m/s 3,281 ft/s Pés por Segundo Metros por Segundo m/s 3,6 kg/h Quilômetros por Hora Metros por Minuto m/min 0,03728 mi/h Milhas por Hora Quilômetros por Hora km/h 0,91134 ft/s Pés por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quilowatts Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatt Hora kW/h 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU		Mega Pascal	MPa	10,1971	kg/cm2	Centímetro Quadrado
VELOCIDADE Metros por Segundo m/s 3,281 ft/s Pés por Segundo VELOCIDADE Metros por Segundo m/s 3,6 kg/h Quilômetros por Hora Metros por Minuto m/min 0,03728 mi/h Milhas por Hora Quilômetros por Hora km/h 0,91134 ft/s Pés por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quilowatts Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1,000 W Watts Megawatts MW 1,000,000 W Watts Quilowatt Hora kW/h 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU	PESU					Quilogramas
VELOCIDADE Metros por Segundo m/s 3,281 ft/s Pés por Segundo VELOCIDADE Metros por Segundo m/s 3,6 kg/h Quilômetros por Hora Metros por Minuto m/min 0,03728 mi/h Milhas por Hora Quilômetros por Hora km/h 0,91134 ft/s Pés por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quilowatts Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatt Hora kW/h 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATIDA Graus Celsius + 32 oC 1,8 oF Graus Farenheit	I LJU		kg			
VELOCIDADE Metros por Mínuto m/min 0,03728 mi/h Milhas por Hora Quilômetros por Hora km/h 0,91134 ft/s Pés por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quilowatts Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATIBA Graus Celsius + 32 oC 1,8 oF Graus Farenheit					ft/s	
Quilômetros por Hora km/h 0,91134 ft/s Pés por Segundo Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo V 0,7355 kW Quilowatts Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATURA Graus Celsius + 32 oC 1,8 oF Graus Farenheit						Quilômetros por Hora
Quilômetros por Hora km/h 0,27778 m/s Metros por Segundo Cavalos Vapor cv 0,7355 kW Quilowatts Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATIBA Graus Celsius + 32 oC 1,8 oF Graus Farenheit	VELOCIDADE					
POTÊNCIA Cavalos Vapor cv 0,7355 kW Quilowatts POTÊNCIA Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATIBA Graus Celsius + 32 oC 1,8 oF Graus Farenheit						
POTÈNCIA Cavalos Vapor cv 0,9863 HP Horse Power Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATURA Graus Celsius + 32 oC 1,8 oF Graus Farenheit			km/h			
POTÊNCIA Cavalos Vapor cv 735,5 W Watts Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATURA Graus Celsius + 32 oC 1,8 oF Graus Farenheit						· ·
POTÊNCIA Quilowatts kW 1.000 W Watts Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATURA Graus Celsius + 32 oC 1,8 oF Graus Farenheit			CV			
Megawatts MW 1.000.000 W Watts Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU Graus Celsius + 32 oC 1,8 oF Graus Farenheit						
Quilowatts kW 1,341 HP Horse Power Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATIDA Graus Celsius + 32 oC 1,8 oF Graus Farenheit	POTENCIA					
Quilowatt Hora kW/h 3412,98 BTU BTU TEMPEDATIDA Graus Celsius + 32 oC 1,8 oF Graus Farenheit						
Graus Celsius + 32 OC 1,8 OF Graus Farenheit						
		·				
Graus Celsius + 273 oC 1 K Kelvin	TEMPERATURA					
	. Ziiii Eimiona	Graus Celsius + 273	ОС	1	K	Kelvin

Tabela de comprimentos equivalentes em conexões

Tabela de comprimentos equivalentes em metros de canalização, para cálculo das perdas de carga localizadas.

224517.2			Diâmetro	nominal X E	quivalência	em metros	de canaliza	ção		
CONEXÃO	<u>Material</u>	3/4"	<u>1"</u>	1 1/4"	<u>1 1/2"</u>	2"	2 1/2"	3.	<u>4"</u>	5*
C 000	<u>PVC</u>	0,5	<u>0,6</u>	0,7	<u>1,2</u>	1,3	<u>1,4</u>	1,5	<u>1,6</u>	1,9
Curva 90°	<u>Metal</u>	0,4	<u>0,5</u>	0,6	<u>0,7</u>	0,9	<u>1</u>	1,3	<u>1,6</u>	2,1
Curva 45°	<u>PVC</u>	0,3	<u>0,4</u>	0,5	<u>0,6</u>	0,7	<u>0,8</u>	0,9	<u>1</u>	1,1
Curva 45°	<u>Metal</u>	0,2	0,2	0,3	<u>0,3</u>	0,4	<u>0,5</u>	0,6	<u>0,7</u>	0,9
Joelho 90°	<u>PVC</u>	1,2	<u>1,5</u>	2	<u>3,2</u>	3,4	<u>3,7</u>	3,9	<u>4,3</u>	4,9
Jueniu 90	<u>Metal</u>	0,7	<u>0,8</u>	1,1	<u>1,3</u>	1,7	<u>2</u>	2,5	<u>3,4</u>	4,2
Joelho 45°	<u>PVC</u>	0,5	<u>0,7</u>	1	<u>1,3</u>	1,5	<u>1,7</u>	1,8	<u>1,9</u>	2,5
Jueniu 43	<u>Metal</u>	0,3	<u>0,4</u>	0,5	<u>0,6</u>	0,8	<u>0,9</u>	1,2	<u>1,5</u>	1,9
Tê de passagem direta	<u>PVC</u>	0,8	<u>0,9</u>	1,5	<u>2,2</u>	2,3	<u>2,4</u>	2,5	<u>2,6</u>	3,3
Te de passagem direta	<u>Metal</u>	0,4	<u>0,5</u>	0,7	<u>0,9</u>	1,1	<u>1,3</u>	1,6	<u>2,1</u>	2,7
Tê de saída lateral	<u>PVC</u>	2,4	<u>3,1</u>	4,6	<u>7,3</u>	7,6	<u>7,8</u>	8	<u>8,3</u>	10
Te de Salua laterar	<u>Metal</u>	1,4	<u>1,7</u>	2,3	<u>2,8</u>	3,5	<u>4,3</u>	5,2	<u>6,7</u>	8,4
Tê de saída bilateral	<u>PVC</u>	2,4	<u>3,1</u>	4,6	<u>7,3</u>	7,6	<u>7,8</u>	8	<u>8,3</u>	10
Te de Salda bilateral	<u>Metal</u>	1,4	<u>1,7</u>	2,3	<u>2,8</u>	3,5	<u>4,3</u>	5,2	<u>6,7</u>	8,4
União	<u>PVC</u>	0,1	<u>0,1</u>	0,1	<u>0,1</u>	0,1	<u>0,1</u>	0,15	<u>0,2</u>	0,25
Ulliau	<u>Metal</u>	0,01	<u>0,01</u>	0,01	<u>0,01</u>	0,01	<u>0,01</u>	0,02	<u>0,03</u>	0,04
Saída de canalização	<u>PVC</u>	0,9	<u>1,3</u>	1,4	<u>3,2</u>	3,3	<u>3,5</u>	3,7	<u>3,9</u>	4,9
Salua de Callalização	<u>Metal</u>	0,5	<u>0,7</u>	0,9	<u>1</u>	1,5	<u>1,9</u>	2,2	<u>3,2</u>	4
Luva de redução (*)	<u>PVC</u>	0,3	<u>0,2</u>	0,15	<u>0,4</u>	0,7	<u>0,8</u>	0,85	<u>0,95</u>	1,2
Luva de redução ()	<u>Aço</u>	0,29	<u>0,16</u>	0,12	<u>0,38</u>	0,64	<u>0,71</u>	0,78	<u>0,9</u>	1,07
Registro de gaveta ou esfera aberto	<u>PVC</u>	0,2	<u>0,3</u>	0,4	<u>0,7</u>	0,8	<u>0,9</u>	0,9	<u>1</u>	1,1
negistio de gaveta ou esteta abelito	<u>Metal</u>	0,1	<u>0,2</u>	0,2	<u>0,3</u>	0,4	<u>0,4</u>	0,5	<u>0,7</u>	0,9
Registro de globo aberto	<u>Metal</u>	6,7	<u>8,2</u>	11,3	<u>13,4</u>	17,4	<u>21</u>	26	<u>34</u>	43
Registro de ângulo aberto	<u>Metal</u>	3,6	<u>4,6</u>	5,6	<u>6,7</u>	8,5	<u>10</u>	13	<u>17</u>	21
Válvula de pé com crivo	<u>PVC</u>	9,5	<u>13,3</u>	15,3	<u>18,3</u>	23,7	<u>25</u>	26,8	<u>28,8</u>	37,4
valvala de pe com envo	<u>Metal</u>	5,6	<u>7,3</u>	10	<u>11,6</u>	14	<u>17</u>	22	23	30
Válvula de Retenção Horizontal	<u>Metal</u>	2,4	<u>3,2</u>	2,7	<u>4,8</u>	6,4	<u>5,2</u>	9,7	<u>12,9</u>	16,1
Vertical	<u>Metal</u>	1,6	<u>2,1</u>	4	<u>3,2</u>	4,2	<u>8,1</u>	6,3	<u>6,4</u>	10,4

Observações:

- 1. Os valores acima estão de acordo com a NBR 5626/82 e Tabela de Perda de Carga da Tigre para PVC rígido e cobre, e NBR 92/80 e Tabela de Perda de Carga Tupy para ferro fundido galvanizado, bronze ou latão.
- 2. (*) Os diâmetros indicados referem-se à menor bitola de reduções concêntricas, com fluxo da maior para a menor bitola, sendo a bitola maior uma medida acima da menor.

Ex.: 1 1/4" x 1" - 1 1/2" x 1 1/4"

Tabela de vapor de água saturado

Referência de Pressão

Pressão Absoluta	Pressão Manométric a	Temp. saturaçã o	Entalpia espec. da água	Entalpia espec. de vaporizizaçã o	Entalpia espec. do vapor	Volume espec. da água	Volume espec. do vapor	Entropia espec. da água	Entropia espec. de vaporizaçã o	Entropia espec. do vapor	Calor espec. vapor	Calor espec. vapor
Pats	Prel	t _{sat}	h _f	h _{fg}	hg	Vf	v g	Sf	Sfg	Sg	Cv	Cp
bar	bar	°C	kJ/kg	kJ/kg	kJ/kg	dm³/kg	m³/kg	kJ/kg K	kJ/kg K	kJ/kg K	kJ/kg K	kJ/kg K
1	0	99.6	417.5	2257.6	2675.2	1.0430	1.694	1.303	6.056	7.359	1.525	2.043
2	1	120.2	504.8	2201.7	2706.6	1.0600	0.886	1.530	5.597	7.127	1.577	2.127
3	2	133.6	561.6	2163.7	2725.3	1.0730	0.606	1.672	5.320	6.992	1.616	2.195
4	3	143.6	604.9	2133.6	2738.6	1.0830	0.462	1.777	5.119	6.896	1.651	2.256
5	4	151.9	640.4	2108.2	2748.7	1.0920	0.375	1.861	4.960	6.821	1.682	2.312
6	5	158.9	670.7	2086.0	2756.7	1.1000	0.316	1.932	4.829	6.760	1.710	2.365
7	6	165.0	697.4	2066.0	2763.4	1.1070	0.273	1.993	4.715	6.708	1.736	2.415
8	7	170.4	721.3	2047.7	2768.9	1.1140	0.240	2.046	4.616	6.663	1.762	2.464
9	8	175.4	743.0	2030.7	2773.7	1.1200	0.215	2.095	4.527	6.622	1.785	2.511
10	9	179.9	762.9	2014.8	2777.8	1.1260	0.194	2.139	4.447	6.586	1.808	2.557
11	10	184.1	781.4	1999.9	2781.3	1.1310	0.177	2.179	4.374	6.553	1.830	2.602
12	11	188.0	798.7	1985.7	2784.4	1.1370	0.163	2.217	4.306	6.523	1.852	2.646
13	12	191.6	815.0	1972.1	2787.1	1.1420	0.151	2.252	4.243	6.495	1.873	2.689
14	13	195.1	830.3	1959.1	2789.5	1.1470	0.141	2.284	4.184	6.468	1.893	2.732
15	14	198.3	844.9	1946.7	2791.5	1.1520	0.132	2.315	4.129	6.444	1.912	2.775
16	15	201.4	858.8	1934.6	2793.4	1.1570	0.124	2.344	4.077	6.421	1.931	2.816
17	16	204.3	872.0	1923.0	2795	1.1620	0.117	2.372	4.027	6.399	1.950	2.858
18	17	207.2	884.7	1911.7	2796.4	1.1660	0.110	2.398	3.980	6.378	1.969	2.899
19	18	209.8	897.0	1900.7	2797.7	1.1700	0.105	2.423	3.935	6.358	1.987	2.940
20	19	212.4	908.7	1890.0	2798.8	1.1750	0.100	2.447	3.892	6.340	2.004	2.981
21	20	214.9	920.1	1879.6	2799.7	1.1790	0.095	2.470	3.851	6.322	2.022	3.021
22	21	217.3	931.0	1869.5	2800.5	1.1830	0.091	2.492	3.812	6.304	2.039	3.062
23	22	219.6	941.7	1859.5	2801.2	1.1870	0.087	2.514	3.774	6.288	2.055	3.102
24	23	221.8	952.0	1849.8	2801.8	1.1910	0.083	2.534	3.737	6.272	2.072	3.142
25	24	224.0	962.0	1840.2	2802.2	1.1950	0.080	2.554	3.702	6.256	2.088	3.182
26	25	226.1	971.7	1830.9	2802.6	1.1990	0.077	2.574	3.667	6.241	2.104	3.222
27	26	228.1	981.2	1821.7	2802.9	1.2030	0.074	2.592	3.634	6.227	2.120	3.262
28	27	230.1	990.5	1812.6	2803.1	1.2070	0.071	2.611	3.602	6.213	2.136	3.301
29	28	232.0	999.5	1803.7	2803.2	1.2100	0.069	2.628	3.571	6.199	2.151	3.341
30	29	233.9	1008.3	1795.0	2803.3	1.2140	0.067	2.645	3.540	6.186	2.166	3.381
31	30	235.7	1016.9	1786.3	2803.3	1.2170	0.065	2.662	3.510	6.173	2.181	3.421
32	31	237.5	1025.4	1777.8	2803.2	1.2210	0.062	2.679	3.482	6.160	2.196	3.461
33	32	239.2	1033.6	1769.4	2803.1	1.2250	0.061	2.694	3.453	6.148	2.211	3.501
34	33	240.9	1041.7	1761.2	2802.9	1.2290	0.059	2.710	3.426	6.136	2.226	3.541
35	34	242.6	1049.7	1753.0	2802.6	1.2320	0.057	2.725	3.399	6.124	2.240	3.581
36	35	244.2	1057.5	1744.9	2802.3	1.2360	0.055	2.740	3.373	6.113	2.254	3.621
37	36	245.8	1065.1	1736.9	2802	1.2390	0.054	2.754	3.347	6.101	2.268	3.661
38	37	247.4	1072.6	1729.0	2801.6	1.2420	0.052	2.769	3.322	6.090	2.282	3.702
39	38	248.9	1080.0	1721.1	2801.1	1.2450	0.051	2.783	3.297	6.080	2.296	3.742
40	39	250.4	1087.3	1713.4	2800.7	1.2490	0.050	2.796	3.273	6.069	2.310	3.783

Tabela de vapor de água saturado

Referência de Temperatura

Temp. saturaçã o	Pressão Absoluta	Pressão Manométric a	Entalpia espec. da água	Entalpia	Entalpia espec. do vapor	Volume espec. da água	Volume espec. do vapor	Entropia espec. da água	Entropia	Entropia espec. do vapor	Calor espec. vapor	Calor espec. vapor
t _{sat}	Pats	Prel	h _f	h _{fg}	hg	Vf	v g	Sf	Sfg	Sg	Cv	Ср
° C	bar	bar	kJ/kg	kJ/kg	kJ/kg	dm³/kg	m³/kg	kJ/kg K	kJ/kg K	kJ/kg K	kJ/kg K	kJ/kg K
100	1.01	0.01	419.10	2256.66	2675.76	1.0437	1.674	1.307	6.048	7.355	1.526	2.044
105	1.21	0.21	440.22	2243.39	2683.61	1.0477	1.420	1.363	5.933	7.296	1.538	2.062
110	1.43	0.43	461.37	2229.93	2691.31	1.0519	1.211	1.419	5.820	7.239	1.550	2.082
115	1.69	0.69	482.57	2216.28	2698.85	1.0562	1.037	1.474	5.710	7.183	1.562	2.103
120	1.98	0.98	503.81	2202.42	2706.23	1.0606	0.892	1.528	5.602	7.130	1.576	2.126
125	2.32	1.32	525.10	2188.33	2713.43	1.0652	0.771	1.582	5.496	7.078	1.590	2.150
130	2.70	1.70	546.44	2174.00	2720.44	1.0700	0.669	1.635	5.393	7.027	1.605	2.176
135	3.13	2.13	567.83	2159.43	2727.26	1.0750	0.582	1.687	5.291	6.978	1.621	2.203
140	3.61	2.61	589.28	2144.59	2733.87	1.0801	0.509	1.739	5.191	6.930	1.638	2.233
145	4.15	3.15	610.78	2129.47	2740.26	1.0853	0.446	1.791	5.093	6.884	1.656	2.265
150	4.76	3.76	632.35	2114.06	2746.41	1.0908	0.393	1.842	4.996	6.838	1.674	2.299
155	5.43	4.43	653.98	2098.34	2752.33	1.0964	0.347	1.893	4.901	6.794	1.694	2.335
160	6.18	5.18	675.69	2082.30	2757.99	1.1022	0.307	1.943	4.807	6.750	1.715	2.374
165	7.00	6.00	697.46	2065.91	2763.38	1.1082	0.273	1.993	4.715	6.708	1.736	2.415
170	7.91	6.91	719.32	2049.17	2768.49	1.1145	0.243	2.042	4.624	6.666	1.759	2.460
175	8.92	7.92	741.26	2032.05	2773.3	1.1209	0.217	2.091	4.534	6.625	1.784	2.507
180	10.02	9.02	763.28	2014.54	2777.82	1.1275	0.194	2.140	4.446	6.585	1.809	2.558
185	11.22	10.22	785.41	1996.61	2782.01	1.1344	0.174	2.188	4.358	6.546	1.835	2.612
190	12.54	11.54	807.63	1978.25	2785.88	1.1415	0.157	2.236	4.271	6.507	1.863	2.670
195	13.98	12.98	829.97	1959.43	2789.4	1.1489	0.141	2.284	4.185	6.469	1.892	2.731
200	15.54	14.54	852.42	1940.14	2792.56	1.1565	0.127	2.331	4.100	6.431	1.923	2.797
205	17.23	16.23	874.99	1920.35	2795.34	1.1600	0.115	2.378	4.016	6.394	1.954	2.867
210	19.06	18.06	897.70	1900.04	2797.74	1.1726	0.104	2.425	3.933	6.357	1.988	2.943
215	21.04	20.04	920.54	1879.19	2799.73	1.1800	0.095	2.471	3.850	6.321	2.022	3.023
220	23.18	22.18	943.54	1857.76	2801.3	1.1900	0.086	2.518	3.767	6.285	2.058	3.109
225	25.48	24.48	966.70	1835.73	2802.43	1.2000	0.078	2.564	3.685	6.249	2.096	3.201
230	27.95	26.95	990.04	1813.07	2803.1	1.2087	0.072	2.610	3.603	6.213	2.135	3.299
235	30.60	29.60	1013.55	1789.74	2803.3	1.2200	0.065	2.656	3.522	6.178	2.175	3.405
240	33.45	32.45	1037.27	1765.72	2802.99	1.2291	0.060	2.701	3.441	6.142	2.217	3.519
245	36.49	35.49	1061.20	1740.96	2802.16	1.2400	0.055	2.747	3.360	6.107	2.261	3.641
250	39.74	38.74	1085.35	1715.43	2800.78	1.2513	0.050	2.793	3.279	6.072	2.306	3.772

Tabela de compatibilidade química

Legenda:

R = Resistente

A = Excelente - Sem efeito (<2 mils penetração/ano para os metais)

B = Bom – Efeito reduzido (<20 mils penetração/ano para os metais)

C = Razoável – Efeito moderado (<50 mils penetração/ano para os metais)

U = Não satisfatório — Efeito elevado (>50 mils penetração/ano para os metais)

- = Sem dados disponíveis ou conflito de dados

NOTA: 1 mils = 0.001 de polegada

					P	last	ic							Elas	top	oly	mer	Š.						Me	tals	5		
	ABS	Acetal	CPVC	FEP	Nylon 6, 66	HDPE	Polypropylene	PTFE	PVC Type I	PVC Type II	PVDF	EPDM	Kel-F	Neoprene	Nitrile	Polyurethane	Silicone	Tygon®	Viton-A	Ceramic	Silica	304 Stainless	316 Stainless	Carbon Steel	Hastelloy-C	Aluminum	Brass	Copper
Acetaldehyde	U	Α	U	R	U	U	A	Α	U	U	Х	Α	A	С	u	U	Α	U	U	÷	R	E	E	G	E	G	U	U
Acetamide	-	Α	-	R	R	R	Α	Α	U	-	C	Α	Α	В	A	U	В	U	В	-	-	G	G	-	~	G	-	-
Acetate Solvent	U	=	U	R	R	R	В	Α	U	U	Α	Α	Α	C	U	-	A	U	U	-	-	E	E	G	E	E	S	G
Acetic Acid 10%	X	X	C	R	U	R	В	Α	U	-	C	Α	Α	C	C	-	C	U	R	Α	R	E	E	U	Έ	G	U	G
Acetic Acid, Glacial	U	U	U	R	U	R	Α	Α	U	U	В	U	A	X	X	U	В	U	U	Α	R	E	E	U	E	E	U	U
Acetone	U	Α	U	R	R	R	Α	Α	U	Ú	U	A	Α	U	U	U	В	U	U	Α	R	Ε	E	G	E	E	G	E
Acetonitrile	U	-	-	R	R	-	R	R	-	4	R	R	-	_	-	-	-	-	-	14	-	G	G	G	-	Ε	G	G
Acetophenone	U	-	-	R	R	U	R	R	U	U	R	R	-	U	U	÷	-	-	U	-	9	G	G	G	G	G	G	G
Acetyl Chloride	U	2	U	R	U	U	U	Α	U	U	R	U	2	U	U	U	-	-	R	-	R	G	G	G	-	U	U	U
Acetylene	R	÷	R	R	R	-	R	R	R	R	R	R	8	R	R	3	-	=	R	+	-	E	E	G	G	E	U	U
Acrylonitrile	U	-	X	R	R	R	Α	Α	X	U	Α	Χ	=	C	U	+	U	-	U	1	-	G	G	G	G	E	G	G
Adipic Acid	R	0	A	R	~	R	В	Α	R	R	À	A	A	В	X	-	U	-	X	4	-	G	G	G	E	G	8	G
Aldrin (1 oz./gal.)	-	-	-	=	_	3	-	_	-	-	-	-	-	-	_	-	-	-	_	-	-	E	E	G	-	E	-	-
Allyl Alcohol	U	-	R	R	R	R	R	R	R	R	R	R	-	R	R	-	-	-	R	16	8	E	E	G	G	G	G	E
Allyl Chloride	U	2	U	R	8	R	R	R	U	U	R	U	-	U	U	9	-	9	-	19.	R	G	E	U	-	U	0	9
Ammonium Acetate	-	-	A	R	A	4	Α	Α	R	R	R	Α	_	Α	В	~	-	Α	Α	-	-	G	G	~	~	G	U	U
Ammonium Oxalate 10%	-	-	-	R	-	=	R	R	R	-	-	R	-	-	_	_	=	-	-	1	-	G	G	U	E	E	-	U
Amyl Acetate	U	В	U	R	R	R	X	Α	U	U	Α	Α	A	U	U	U	U	U	U	Α	R	Ε	E	G	E	E	E	G
Amyl Alcohol	R	Α	A	R	A	R	В	Α	R	U	A	Α	A	Α	В	U	U	Α	В	Α	R	G	G	G	G	G	G	G
Amyl Chloride	U	4	U	R	U	U	U	R	U	U	Ų	R	9	U	IJ	_	-	_	R	-	~	G	G	Ų	E	Ų	G	G
Aniline	U	Α	X	R	X	R	X	Α	U.	U	Α	Χ	Α	U	U	U	U	С	В	Α	R	E	E	G	G	G	U	U
Aniline Hydrochloride	U	10	U	R	U	U	X	Α	X	U	Α	В	-	U	U	-	U	U	Α	-	R	U	U	U	U	U	U	G
Antifreeze	В	U	Α	-	U	-	U	_	Α	-	_	Α	9	C	Α	_	Ć	В	Α	-	-	9	A	0	~	Α	-	-
Aroclor 1248	-	-	+	R	A	U	U	Α	-	-	-	В	A	U	X	-	В	-	Α	-	-	G	G	G	E	E	E	E
Asphalt	3	В	X	R	Α	R	В	Α	Α	-	A	U	A	U	X	+	U	=	Α	-	0	G	G	G	-	E	E	E
Benzaldehyde	X	Α	U	R	Α	U	X	Α	U	U	Α	А	A	U	U	U	U	U	U	Α	R	G	G	U	G	G	G	G
Benzene	U	Α	U	R	Α	U	X	Α	U	U	A	U	В	U	U	U	U	С	Α	A	R	G	G	G	G	E	G	G
Benzo Sulfonic Acid 10%	R	-	R	R	U	R	R	R	R	R	R	U	-	R	U	U	-	_	R	+	R	G	G	U	G	U	G	-
Benzyl Alcohol	υ	Α	X	R	В	U	A	Α	U	U	A	В	A	X	X	U	10	U	Α	Α	R	E	E	G	G	G	G	E
Benzoic Acid	R	В	A	R	X	В	R	Α	R	R	A	U	Α	В	U	U	В	Α	Α	Α	R	G	G	U	Ε	G	G	G
Benzol	U	Α	U	R	X	U	U	Α	U	U	Α	U	Α	U	U	U	U	С	Α	A	R	G	G	G	G	E	G	G
Benzonitrile	-	-	-	R	R	Α	-	A	-	-	_	-	A	-	-	_	Α	-		-	-	U	U	-	С		-	_
Benzyl Chloride	U	A	U	R	R	2	С	R	R	94	R	U		U	U	-	U	-	A	2	-	G	G	U		U	U	U
Bromobenzene	-	-	-	R	_	-	U	R		_	R	U		U	U	-	-	-	R	-	-		Ė	-		-	U	-
Butadiene	U	Α	Α	R	R	U	U	Α	R	U	Α	X	Α	В	X	U	U	_	В	1	-	G	G	G	G	G	G	G

ButylAlchold Bu		5	tals	Me							er	me	oly	top	Elas	ı						ic	lasti	P						
Butyl Alcohol	Brass	Aluminum	Hastelloy-C	Carbon Steel	316 Stainless	304 Stainless	Silica	Ceramic	Viton-A	lygon	Tigon®	Silicone	Polyurethane	Nitrile	Neoprene	Kel-F	EPDM	PVDF	PVC Type II	PVC Type I	PTFE	Polypropylene	HDPE	9	FEP	CPVC	Acetal		ABS	
Marticular Mar	G G	G	G	Е	G	G	2	=	Α	С	1 (U	R	Α	Α	A	Ü	Α	R	R	Α	U	U	R	R	С	Α		В	ne
Butyl Ether	G G	Е	G	G	E	Е	R	420	Α	В	3 [В	720	X	Α	A	Α	Α	U	R	Α	R	В	В	R	Α	Α		U	l Alcohol
Butyl Phenol		G	G	G	G	24	-	-3	U	IJ	3 (В	152	R	U	U	<u> </u>	X	U	U	Α	U	U	R	R	U	Χ		-	tyl Amine
Butylacetate	100	Е	-	Ε	E	=	12	=	U	A	1 1	U	34	В	U	Α	U	Α	12	R	Α	9	225	A	R	U	U		-	l Ether
Butylacetate	J	G	G	144	E	G	-	110	U	- 1		-	822	_	U	_		R	U	U	R	U		_	R	U	-		U	l Phenol
Butylacetate	G G	U	G	=	G	G	*	=3	С	- 1	p :-	A	-	U	D	Α	В	R	-	R	R	R	-	R	R	U	-		-	l Phthalate
Carbon Tetrachloride U B U B U R R R R R R R R R R R R	G G	Е	G	G	G	G	R	-	U	J	ι	U	1944	U	Χ	Α	В	В	U	U	Α	X	R	Α	R	X	Α		U	
Carbon Tetrachloride U B U B U R R R R R R R R R R R R	G G	G	E	U	G	G	R	-	В	U	1 1	U	-	U	U	A	В	Α	U	U	R	R	U	U	R	U	Α		U	Monte Carlotte Control
Carbonic Acid R B B A R R R R B A R R R B A R R B A B R B A B R B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B	GE	U	E	G	E	Е	R	Α	A	В	E	U	U	U	U	A	U	R	U	U	R		U	X	R	U	В		U	
Chlorobenzene U X U R R U U B B U U A B U U B B U U A B U U B B U U A B U U A U U U U		Е	E	G	G	G	-	Α	A			A	R	X	Х		В	Α	R	R	Α	A	R	12/1/20	1000		В		R	
Chlorobenzene U	100	U	-	_	-	_	_			A	_		_	-	_	1000		1000		-		-	_		_	1000	_	-	1000	
Chlorobromomethane - - - - - - - - -	-	G	-	_	200	G	R	A		-	-	100	_	200		26.30		100	_	-	_	-	_	100	-	100		-	-	
Chlorocethane (¼ lb/gal.) U	100	_		_				_		-	_	-	_	100	_			_	_		_	1	-	-	-				-	
Chloroethane U A U R R R V X A U U A X X A U U U B A A R E E U G G G G G G G G G G G G G G G G G		-77		G	G		8	_	-	-		1000	_						_	_		-		-					11	N. W. W. W. W. Bridge
Chloroform U A U R V R R U V A U V R V A U U V A U U B U U U V B A R R U V V V B A R R E R U U G G G Chloroaphthalene U R U V R R U U V R		32				_				-		-	_	-			- 100	٨		H				R		11			-	
Chloronaphthalene U		120	G	USU	-	-	100			-		-	-		10000		1000		1000	-	35	10000	-	-			155			The state of the s
Chilorophenol 5% (aq.)		5035	-		-	_	10				201	1000	100.00	100.00	1000		17070	-	1000		-5540	^	0.000				2000		10000	100000000000000000000000000000000000000
Circic Acid U B B B R R A A A R R - A A B R - A A A B R - A A A B R - A A A A A A A A A A A A A A A A A A	7	99114		07.54	1000	-		_			-		_				-	D	(0000	-	3770		-		52.00		100	Žiji	U	- CANADAM CANADAM
Cresol			-	2000	and the same	2000	D	20	٨	-	-	150	_	A		٨			(0530)	1752	200	٨		NAME OF THE PARTY	0.000	17400	1000		11	ACCOUNT OF THE PROPERTY OF THE
Cresylic Acid 50% U U U U R R U R X R R R R R R R R R R R		10010		07190	A PARTY OF THE PARTY OF T	Lucas C		2,000	20.00		1000	10000		-	1000	-	1721100	27.0		-	32200	CHARLES .	55076		1000	1000	ERA	-	- 3200	The second secon
Crude Oil R R R R R R R R U R U U U U U U U U U		385	CASE	6226	10000	2000	n		200	580	967 52	1000	9.50	CSA	1800		38	P. A. N. S.	15005		02500	DATE OF THE PARTY	5.8571	1000	00000		0030		3176575	5990
Cyclohexane	-	19005	100	15163	2707				9.500	-		-	COSE	2007	1867	_	- 99	2000	50.60	200	2027	1000	0086	1000	1000		1888	-	Jan. W. Co.	CONFIGURACION CONTRACTOR CONTRACT
Cyclohexanone U A U R R U U A U R B U U A C G <	7 Jackson 1995	- 600	-	1000	-	1000		_	- ATIE		_		1 105		_				_	25			-	-	_	-		-	-	
DDT 5%	1 10 10	(2)		190	100	. 22		_	102	8	3	100	-0.8			-		-177	ATTEN.	-			_			1000		-	1000	W
Detergents (general)		222		-31		- >	-	100				3			-			H	7200	-		U		R		-	Α			Total Control of the
Diacetone Alcohol - A U R R R R R A R - A A B U U - U B U 6 G G E Dibutyl Phthalate U - U R R U U R R R U U U U U - U U U U 6 G G G E Dichlorobenzene U - U R X U C A U U A U B U U C 6 G G G G Dichlorobenzene U - R R R R R R R U U R R U U R R R U U R R R U U R R R U U R R R U U R		_		_		_				-	-			-	120 %	-	68	=	1505		18		1000	-	-	100	-			95 (NE) 9/N9
Dibutyl Phthalate U - U R U R U U U R U U U R U U U R U U R U U U R U U A U A U A U A U A U A U A U A U A U A U A U A U A U A U A U A U A U A U U A U U A U U A U U A U U A U U A U U D U D A R R R U U U A U U D D A R R U U U U D		_	-	_	-	_	=			-	-	-	_	-	797794	-	- CO	100		100	374		10000		727		65	-	-	2001 07/10/01 07 07
Dichlorobenzene U U R X U C A U U A U U A U U A U U A U U A U U A U U A U U A U U A U U A U U A U U U U C A R G	4000	_					_		-	-			_		606.7		2010		-		1 12000			-	1000		. 3222.			CAMPAGE AND TO PRODUCE OF THE STATE OF THE S
Dichloroethane U A U R R R R X A U U R R R U U U A U U U U R R - G G G G G G G G G G G G G G G		_		G		G	0	=35		_			U		34500		9520		1000	100	7 33	10000	31.00		0.000	1000			3,000	
Dichloroethylene U R R R - R R U U R U - U U R R G G G - G G Dichlorofluoromethane R R R R U U				_	-		=			-		U		-	02.35		1000	15 C. C.	9000		2600	1000	302.00		200.00	200	0.0		4000	
Dichlorofluoromethane		-	-	-	-	147	R			J		=		-	100	Α	1,793	2072	0820	-	EGIX	The Value of	R		2000	U	Α		-	95.75 horself 2012-177 (2012-177) 2010
Diesel Fuel — A A R R R R A A R R R R U U U U — R — R — A U A B A — U — A — E E G G E E E E E E E E E E E E E E E		G	G	=	G	G	8	3	R	٤.	14	13	32	U	U	-	U	R	10.68	-22	5800	R	-	R	W.Kod	9	8-6		U	SEACHER SECTION AND SECTION AS A SECTION OF THE SEC
Diethanolamine R R - R R U U U U R		1022	8	722	-	2	3		-	_		-	- 52	-	-	=	-	-	U	-	R	-	-	-	1,5	-	(i—):		0	
Diethyl Amine U B U R U A X U X B A C B C A - G G U C Diethyl Ether U R U R U R U R R R A A X A U U U <td>10000</td> <td>E</td> <td>1174</td> <td>1000</td> <td></td> <td>200</td> <td>-</td> <td>==</td> <td>A</td> <td>-</td> <td>1</td> <td>U</td> <td>=</td> <td>A</td> <td></td> <td>A</td> <td>U</td> <td>237</td> <td></td> <td></td> <td>7097</td> <td>300</td> <td>R</td> <td>-</td> <td>120</td> <td>A</td> <td>Α</td> <td></td> <td>-</td> <td></td>	10000	E	1174	1000		200	-	==	A	-	1	U	=	A		A	U	237			7097	300	R	-	120	A	Α		-	
Diethyl Ether U R U R U R R U R A U U R U C U U - U - U - U G G G G G Diethyl Phthalate R		E	E		0.00	1000	-					-	=	$\overline{}$		_		1.02	U	-		1000	\rightarrow	-00.00	-	-	_	-		2 2 4 - 2
Diethyl Phthalate R R		G		U	G	G	-	=3	Α	С	3 (В	=	С	Α	-	В	X	8-8	U	Χ	A	U	R	R	U	В		U	356
Diethylene Glycol B A A R R A A X - A A - B C A - - E E E G G Dimethyl Aniline U U U R R - X A U U A B A U <	G G	G	G	G	G	G	-	==:	U	-	1	U	94	U	U	C	U	R	U	U	Α	R	U	R	R	U	R		U	(5/9
Dimethyl Aniline U U U R R - X A U U A B A U U - U U U B B - B A Dimethyl Ether R R R R U R	:-	-	-	~	-	*	~	-	-	-]	2 %	-	-	-	-	-	770	-	100	-	R	-		=	-	-	878		-	12
Dimethyl Ether R R R R R	- G	G	G	Ε	E	Ε	-	=	Α	С	3 (В	=	Α	Α	-	Α	A	=	X	Α	A	R	R	R	Α	Α		В	
Dimethyl Formamide U X U R R R A X U U U X A X U - C U X G U - E Dimethyl Phthalate U - R R R R R U U R U U R E E E - E Dimethyl Sulfoxide - R U R R R R R U - U		Α	В	=	В	В	*		U	IJ	l	U	=	U	U	Α	В	Α	U	U	Α	X	=	R	R	U	U		U	ethyl Aniline
Dimethyl Phthalate U R R - R R U U R U U R E E E - E Dimethyl Sulfoxide - R U R R R R R U - U	- G G	100	G	-	G	G	*	++0	-	- 1	1.5	4	=	R	U	#	1	-	-	-	R	9	-	-	R	0	-		-	ethyl Ether
Dimethyl Sulfoxide — R U R R R R R U — U — — — — — — — — —	- 1-	E	7	U	G	=	4	200	X	U	: 1	C	=	U	Χ	A	X	U	U	U	Χ	Α	R	R	R	U	Χ		U	ethyl Formamide
Dinitrotoluene R U - U U - U - X G G Dioctyl Phthalate U - U R R U U R U U R R - U U U - R - G G G - E	a a	E	-	Ε	E	Е	=	575	R	- 1		-	=	U	U	-	227	R	U	U	R	R	-	R	R	-	0-0		U	ethyl Phthalate
Dioctyl Phthalate U U R U U R U U R U U R U U R - G G G - E		100	-	75	-	3		757	-	- 1	3 13	-	eth.	-	==	-	=3	U	-	U	R	R	R	R	R	U	R		-	ethyl Sulfoxide
		1077	4	-	G	G	57	=6	X	- 1	0 -	U	-	U	U	-	U	=	8=3	-	R	-	220	-	925	-			-	rotoluene
	- B	Е	=	G	G	G	-	-	R	- 1		16	U	U	U	-	R	R	U	U	R	U	U	R	R	U	1-1		U	tyl Phthalate
Dioxane U R = R R U R R U - U U - U U G G G G G	G G	G	G	G	G	G	-	_	U	-1	- T-	9	52	U	U	-	U	U	-	U	R	R	U	R	R	-	R		U	A CONTRACT OF THE PROPERTY OF
		G	G	G	G	G	-	100	A	- 1		U	R	U	В	-	U	_	(=()	U	Α	10000	_	R	R	-	10-11		-	enyl
		В	В	-	37.03	В	-	-	A	U	ı	C	-		- 886	_	93	В	S=0		10001	1000	-	-	7/102	-	U		-	
	-	-	1400	_		STORE .	~			-	-	-	_	-		-	8 1	1000		200	2000	275.7	-				200			

					P	last	ic							Elas	top	oly	mer	Ŋ.						Me	tals			
	ABS	Acetal	CPVC	FEP	Nylon 6, 66	HDPE	Polypropylene	PTFE	PVC Type I	PVC Type II	PVDF	EPDM	Kel-F	Neoprene	Nitrile	Polyurethane	Silicone	Tygon®	Viton-A	Ceramic	Silica	304 Stainless	316 Stainless	Carbon Steel	Hastelloy-C	Aluminum	Brass	Copper
Ethane	8	A	A	-	U	-	U	Α	Α	-	A	U	-	В	A	-	U	A	A	9		A	A	=		-	2	A
Ethanolamine	-	U	U	R	R	100	X	Α	U	9 <u>22</u> 07	X	В	U	В	В	7=	В	0=0	U	А	10	E	É	G	G	G	9	925
Ethers (general)	U	Α	U		R	U	U	Α	U	U	R	С	В	U	X	100	U	С	X	221	R	Е	E	G	G	G	G	G
Ethyl Acetate	U	Α	U	R	R	R	Α	Α	U	U	X	В	A	U	U	U	В	U	U	Α	R	G	G	G	G	s=	G	G
Ethyl Alcohol	В	Α	В	R	R	R	A	Α	R	R	R	Α	В	Α	С	U	В	С	Α	Α	R	G	G	G	E	Е	G	G
Ethyl Benzene	-	R	-	R	-	U	U	R	Ų	U	R	U	9	U	U	8-1	-5	5-5	R	20	9	S	G	U	E	G	-	s=
Ethyl Benzoate	U	10-10	U	-	-	U	В	Α	U	3-3	U		7	U	U	2-1	U	U	A	-	_	-	-	-	_	7-	_	2-0
Ethyl Chloride	U	R	Ш	R	R	U	U	R	U	U	R	R	-	U	R	U	-	10-00	В	-	R	Е	E	G	G	<u>;</u> —	-	G
Ethyl Ether	U	Α	U	R	R	U	U	Α	U	U	R	U	A	U	X	U	U	:-:	U	-	R	G	G	G	G	G	G	G
Ethyl Sulfate	-	ş —	-	-	-	-	=	Α	-	0-1		-	Α	-	Α	-		N-3	Α	-	-	U	U	100	-	5.7	-	В
Ethylene Bromide	U	33-33	U	R	R	U	U	Α	U	U	A	X	В	Χ	U	-	U	U	Α	551		Е	E	100	E	en.		100
Ethylene Chloride	U	Α	U	R	R	R	X	Α	U	U	Α	Х	A	U	U	<u></u>	U	1000	В	-	15	G	G	G		200		G
Ethylene Chlorohydrin	U	U	U	R	U	U	X	Α	U	U	A	В	_	Χ	U	U	С	U	Α			G	G	G	G	G	G	G
Ethylene Diamine	U	Х	U	R	U	_	R	Α	U	U	В	Α	U	Х	A	-	Α	1-2	В	-	E	G	G	G	U	G	U	U
Ethylene Dibromide		-	-	R	T	-	R	R	E	1=	R	-		-	-	.=	-	8000	E	-		-	G	=	G	E	G	-
Ethylene Glycol	A	В	Α	R	R	R	A	Α	R	R	A	Α	A	Α	A	R	A	В	R	A		G	G	G	E	Е	G	G
Ethylene Oxide	U	U	X	R	R	R	U	Α	U	U	A	Х	Ċ	U	U	U	U	7 <u>=</u> 0	U	27	R	G	G	G	E	E	U	02
Formaldehyde 100%	В	Α	A		U	0.50	С	Α	A	820	A	Α	A	С	С	1921	В	В	U	225		С	A	1952	A	Α		A
Formaldehyde 37%	A	A	Α	R	R	R	A	Α	R	R	Α	Α	A	В	X	U	-	243	R	221	R	E	E	U	G	G	E	G
Formic Acid 5%	-	U	R	R	U	R	R	R	R	100	R	R	-	R	U	134	_	-	R		-	G	E	=	E	U	S	E
Fuel Oils	U	Α		R	R	R	Α	В	R	R	В	U	A	В	X	R	U	Α	Α	200		G	G	G	G	G	G	G
Gasoline (high-aromatic)	U	В	A	-			A	В	A	1000	A	U	A	A	A	-	U	Α	A	A		A	A	100	A	U	1-	:=:
Gasoline (leaded)	U	Α	U	R	R	U	X	Α	R	-	A	U	A	В	A	R	U	С	A	A		G	G	G	E	G	G	G
Gasoline (unleaded)	U	A	X	R	R	U	X	A	R		A	U	A	В	A	R	U	С	A	- CO-11	2	G	G	G	E	G	G	G
Glycolic Acid	В	A	A	R		R	A	A	R	R	В	A	В	A	A	-	A	A	A	-		G	G	U	G	G		-
Heptane	X	Α	A	R	R	R	С	Α	R	R	A	U	A	В	A	U	U	В	A	550		G	G	G	E	G	G	G
Hexachloroethane		-		_	-	_		R	-	2-3	-	_			5=8	_		2-3		-		G	G	-	G	G	S	G
Hexamine		-		R		(22)		R		1000	-	200		200				5 - 3		=		E	E	122	E	E	G	
Hexane	U	Α	В	R	R	U	В	A	R	R	A	U	A	В	A	R	u	U	A	-		E	E	G	E	G	G	_
Hexyl Alcohol	-	A	_		A		_	A	A	10.5	22	С	-	A	A		В	A	С	-		A	A	_	A	A	_	
Hydraulic Oil (petro.)		В		_	A	_	U	A	A	0-0	Α	U	7	A	A	-	В	Α	A	42	100	A	A	4	A	A	A	A
Hydraulic Oil (synthetic)		-	-	_	A	-	U	Α	A	-	Α	Α		Α	U		В	A	A	20		A	A	100	A	Α	A	A
Hydrazine		В	U	-	-	U	С	С	-	200	A	Α		В	В	_	В	N=1	A	-	U	A	A	100		154	-	A
Hydrogen Peroxide (dilute)	R	R	U	R	R	R	R	R	R	1000	R	R	-	U	R		-	9128	R	20		G	G	U	E	E	U	U
Hydroquinone	X	Α	A	R	U	-	A	Α	R	R	R	U		Α	X	=	-	:=:	В	φ.		G	G	G	G	G	G	2=
Hydroxyacetic Acid 70%		Α	A		3		E	Α	U	10-11	A	A		Α	A			0-0	A			- 20	-	120		000	TE.	2=
lodoform		10	-	R		-	R	С	_	5-5	С	A	9	Α	U	-	-	С	R		R	Е	E	U	U	G	-	G
Isobutyl Alcohol	В	_	-	-	A	-	A	A	A	-	_	A	3	A	В	-	A	A	A	**:	-	-	-	-	_	-	-	<u> </u>
Isooctane		_			A	В	A	A	A	-	A	U	A	В	A	s=0	U	A	A		-	A	A	100	112	Α	A	3-0
Isopropyl Acetate	U	U	U	R	R	R	В	A	U	U	X	В	-	U	U	_	U	:-:	U			E	G	Е	G	G	-	3:-5
Isopropyl Alcohol	R	A	C	R	U	R	A	A	R	R	R	A	-	В	В	U	A	Α	A	A		G	G	G	G	G	G	G
Isopropyl Ether		U	R	R	R		X	A	R	R	X	U	A	U	В	R	U	A	U			E	G	-	_	-	G	G
Isotane	-	-	-	_	U	_	U	-	A	-	A	_	- A	U	A	-	-	A	-	A		-	-	100		U	-	-
Jet Fuel JP-4, JP-5		_ A	R	R	R	_	A	Α	R	R	A	U	A	U	A	U	U	A	A	- A		G	G	G	E	G	E	3=
Kerosene	X	A	R	R	R		R	2600.1	R	R	A	U	A	A	A	U	U	U	A	-	100	G	6	G	G	G	G	_
Lacquer Thinners	- 200	U		77.20		4555	U	10/90	U	0.00	A	U		U	Ü	_	U	U	U	A		-	G	_		G		G
SERVICE NAME OF SECURISHING PROCESS.	A	. 876)	3		A	-	1000	A		:-:	10	- 6		- 555	(10 to 20	=		100.00		#		-	1000	#			8	-
Lacquers	A	U	-	- n	A	=	U	A	U	- D	U	U	-	U	U	-	U	A	U	_	100	E	E	11	-	_	-	
Lactic Acid	U	В	A	R	R	- D	В	A	R	R	В	A	A	A	X	-:	A	A	A	A		G	G	U	G	G	G	G
Lead Acetate	В	В	Α	R	R	R	A	Α	R	R	A	A	A	A	В	-	A	В	U	A		G	G	U	G	U	U	G

					P	last	ic							Elas	top	olyı	mer	8						Me	tals	i i		
	ABS	Acetal	CPVC	FEP	Nylon 6, 66	HDPE	Polypropylene	PTFE	PVC Type I	PVC Type II	PVDF	EPDM	Kel-F	Neoprene	Nitrile	Polyurethane	Silicone	Tygon®	Viton-A	Ceramic	Silica	304 Stainless	316 Stainless	Carbon Steel	Hastelloy-C	Aluminum	Brass	Copper
Linoleic Acid	A	В	A	R	U	U	В	Α	R	R	A	U	-	U	В	2-2	В	A	В	-	H	G	G	U	G	G	U	U
Maleic Acid	R	Α	Α	R	X.	R	R	Α	R	R	Α	Х	7	U	U	19=61	-	С	Α		R	G	G	U	G	-	6	-
Malic Acid	R	Α	R	R	Х	R	Α	Α	R	R	Α	U	-	Χ	A	-	В	Α	A	-	-	Ε	E	U	G	G	2	U
Melamine	-	Α	A	-	A	-	Α	Α	U	9-0	-	Α	-	U	C	-	C	U	Α	-	-	-	U	100	-	5-	-	-
Methane	-	Α	-	R	R	-	A	Α	R	R	A	Х	-	В	A	5-5	U	-	A	-		Е	E	G	E	Ε	E	G
Methyl Acetate	U	Χ	U	R	R	R	X	Α	U	U	В	Х	A	Χ	U	S-15	U	Α	U	-	-	G	G	S	E	G		
Methyl Acetone		U	-	-	A	1777	-	Α	U	10-3	U	Α		U	U	S=8	-	Α	U	P E	-	Α	Α	875	=	Α	Α	753
Methyl Acylate	-	В		_		-	U	_	E		В	В	-	В	U	-	U	9=8	U	-	=	Α		199	=	3=7	-	1,=2
Methyl Alcohol	U	Α	Α	R	R	R	A	Α	R	R	A	А	Α	A	A	U	Α	Α	U	Α	R	G	G	G	E	G	G	G
Methyl Alcohol 10%	U	Α	A		В	В	A	Α	-	-	A	Α	Α	Α	A	-31	A	Α	A	A	-	-		22		%=/	9	200
Methyl Amide	U	U	_	-	_		A	Α	U	72	С	А	A	0208	В	727	-	U	U	221	-	Α	Α	100	2	Α	U*	72
Methyl Bromide	U	U	U	R	U	R	X	Α	U	U	A	U	-	U	В	1927	_	5=8	A	==	2	G	G	G		U		V=26
Methyl Butyl Ketone		U		-	U	U	U	1000	-	2=1	U	A	-	U	U	948	U	-	U	-21	-	Α	A	824		2-1	14	
Methyl Chloride	U	В	U	R	R	U	U	Α	U	U	A	U	A	U	U	U	U	U	A		-	Е	E	U	G	U	E	G
Methyl Chloroform	U	_	U	R	-	_	U	R	U	U	R	U	-	U	U	:-:	_		R		-	-		=		2-2		_
Methyl Dichloride	-	U	_	_	С	_	U	12.5	_	_	U	U		_	U	:		-	A	-		-		-		₹ —)		20-2
Methyl Ethyl Ketone	U	U	u	R	R	U	В	Α	U	U	U	A	A	U	U	U	U	U	U	A		G	G	G	G	G	G	G
Methyl Isopropyl Ketone	-	_	_	-	A	_	_	A	U	-	U	c	-	U	U	-	С	-	U	-	-	A	A	-	-	A		A
Methyl Methacrylate		U	R	R	-	_	X	R	R	U	В	U	-	U	U	-	C		U	551		G	G	U		G		_
Methyl Pentanone	U	_	U	R	R	R	R	A	U	U	X	В	A	U	U	2 - 3	U		U		-	G	G	G	G	G	G	G
Methylene Chloride	U	В	U	R	U	U	В	A	U	U	В	Х	A	U	U	U	-	U	В		R	G	G	G	E	E	G	G
Monochloroacetic Acid	-	U	_		U	U	D	A	U		В	C	В	A	U	_			С				A		A	U*	В	U*
Monoethanolamine		U		- R	R	-	В	A	U	U	U	В	-	X	В	-	В	=:	X	- 70 E	9	A E	E	G	G	G	G	G
Motor Oil	- C	В	A	R	R	U	U	A	R	R	В	U	A	В	A	-	_	A	R	A	2	G	G	G	-	_	G	G
Man West State	U	Х	U	R	R	U	R	19104	U	U	A	U	A	U	U	R	U	C	A	A	120	E	E	G	G	G	G	G
Napthalene Nitrobenzene	U	X	U	R	R	00000	В	A	U	U	0.00	27.0	-	U	Ü	U	U	U	В	1041	R	G	100000	0.000	10000	E	G	G
Nitropenzene	U	20		R		U	-	A	1000	7,000	A	U	A	U	-	1000	U	В	U	20		G	G	G	G	G	ь	
	100.00	Α	U	00,000	U	_	R -	A R	R	R	Α	B	Α	- 2000	U	-		- 60	-			G	G	OWNER		G	ĕ	-
Nitrophenol	-	20		-	-	_ _		2000	-		-	U	-	-	-	3—33	2	1-2	-	-		1000	G	-	-	800	-	G
Octane	_	_		R	-	R	R	R	U	U	R	В	-	R	R	-			R		1		-	G	-	G	G	G
Octyl Alcohol	A	A	В		A	-		-	- D	-	-	1764	-	В	В	-	В	-	В		-	A	A	-	C	A	-	A
Oleic Acid	X	A	A	R	R	U	В	A	R	R	A	В	В	X	В	R	U	С	В	A	-	E	E	G	G	G	S	G
Oxalic Acid 5%	R	U	R	R	U	R	R	R	R	R	R	R	-	R	U	-	-		R	m	-	U	G	U	G	G	S	G
Palmitic Acid 10%	A	Α	A	R	R	R	В	A	R	R	A	В	=	U	A	R	U	В	A	-	*	=	G	-	-	G	G	G
Pentachlorophenol	-	=		=	-	100	-	R	=	275	-	. =	-	=	_	. =8	-	=3	R	===	-	-	-	E	-	:=/		_=
Pentane	-	В		=	A		U	A	A	05-33	A	U	-	В	A		U	Α	A	77		С	C	And .	A	В	=	<u> </u>
Petroleum	В	В	A	R	-	U	В	A	R	_	A	U	-	В	A		U	=0	A	- (S)	2	G	G	-50	=	G	G	G
Phenol 10%	U	X	A	R	U	R	В	A	U	U	A	В	В	U	U	U	П	С	Α	Α	3	G	G	G	G	E	G	G
Phthalic Acid	В	С	X	R	R	-	A	Α	U	U	Α	A	-	Α	U		В	===	A	20	12-1	G	E	S	G	G	G	G
Phthalic Anhydride	В	С	U	R	-	1000	U	Α	U	121	A	Α	-	Α	U	-1	203	В	A			E	E	G	E	E	G	772X
Picric Acid	X	Α	U	R	I I I I	U	A	Α	U	U	A	Α	-	Α	X	=	В	-8	A	<u>=</u>	R	G	G	U	G	Е	U	U
Propyl Alcohol	X	Α	A	R	U	R	A	Α	R	R	Α	Α	A	Α	Α		A	Α	A	Α	-	Е	E	G	E	G	G	G
Propylene	В	==:	_	-	-	144	2	Α	В	5(<u>1</u>)		U	-	U	U	=	U	В	A	=:	-	В	A	3000	-	Α		Α
Propylene Glycol	В	В	X	R	R	R	Α	Α	U	1,5953	Α	Α	-	С	Α		A		Α	A	~	G	G	G	G	G	G	G
Propylene Oxide	-	-	-	R	=	R	R	R	U	U	U	R	-	U	U	-	-	-:	U	-	-	E	E	100	-	::::		-
Pyridine	-	В	U	R	R	R	Α	Α	U	U	U	X	Α	U	U	:=::	U	U	U	Α	>	G	G	G	E	G	G	G
Sodium Acetate	В	В	Α	R	R	R	A	Α	R	R	Α	Α	Α	В	В		U	=2	U	A	+	G	G	U	G	E	G	G
Sodium Benzoate	Α	=	Α	R	R	R	A	Α	R	R	Α	Α	-	Α	В	-	-	В	A	-	-	-	-	-	G	G	-	E
Sodium Hypochlorite 20%	R	U	R	R	U	R	R	R	R	R	R	R	A	U	U	- S S	В	С	A	-	U	U	U	U	U	G	G	S
Stearic Acid	U	Α	В	R	R	R	A	Α	R	R	A	X	-	В	В	R	В	В	A	-	R	G	E	S	E	G	S	G

	102-0				P	last	ic							Elas	top	oly	mer	è						Me	tals			
	ABS	Acetal	CPVC	FEP	Nylon 6, 66	HDPE	Polypropylene	PTFE	PVC Type I	PVC Type II	PVDF	EPDM	Kel-F	Neoprene	Nitrile	Polyurethane	Silicone	Tygon®	Viton-A	Ceramic	Silica	304 Stainless	316 Stainless	Carbon Steel	Hastelloy-C	Aluminum	Brass	Copper
Styrene	3	Α	U	_	Α	U	2	Α	U	7=7	٥	U	-	U	U	9 <u>38</u>	U	22	В	-	-	Α	Α	8 <u>03</u>	U*	Α	A	В
Tartaric Acid		В	A	=	В	100	A	Α	A	721	В	В	A	Α	A	120	A	В	A	Α	9	С	C	922	В	В	U*	Α
Tetrachloroacetic Acid	R	-	R	R	R	R	R	R	R	R	R	U	-	R	R	R	-	122	R	-	-	Е	E	122	G	G	S	U
Tetrachloroethane	-	Α	X	R	R	===	C	Α	U	U	A	U	A	U	U	=	U	822	Α	ш	R	Е	E	Ε	E	G	-	S
Tetrachloroethylene	U	Α	U	R	R	U	U	Α	Ų	U	R	U	A	U	U	U	U	=	Α	=	-	Е	E	G	G	G	G	G
Tetrachlorophenol	-		-	-		=	R	R	-	(:—))	R	-	-	-	-	je.	=	-	-	-	4	-	-	1998	-	3-3	9	8-8
Tetraethyl Lead	U	-	R	R	-	U	R	R	R	R	R	U	-	-	U	-	-	-	R	-	-	G	G	G	-	G	G	0-0
Tetrahydrofuran	U	Α	U	R	R	U	C	Α	U	U	В	U	Α	U	U	199	U	-	X	Α	-	Е	G	Ε	E	U	-	()
Toluene	U	Χ	U	R	R	U	C	Α	U	U	Α	U	В	U	χ	U	U	U	С	Α	-	Е	E	Е	E	Ε	Е	Е
Toxaphene-Xylene 10-90%		-:	U	R	-	=	R	R	U	5 - 2		=	-	-	-	·	-	(=	-	G	G	S	-	S	-	i —
Trichloroacetic Acid	-	1 - 2	R	R	U	R	Α	Α	R	1 - 1	В	В	Α	U	R	-	U	С	С	Α	-	U	U	U	G	U	G	G
Trichlorobenzene		=8	-	-	-		-	R	U	0.736	=	- T-2	-	U	U	U	-	1.00	R	554	-	100	-	Ε	-	100	-	5.00
Trichloroethane	-	Α	-	-	-	=	C	Α	С	-	A	U	A	U	U	-	U	455	Α	=	e	-	-	-	-	-	=	1,=
Trichloroethylene	U	U	П	R	R	U	C	Α	U	U	В	U	Α	U	U	U	U	*	X	Α	-	G	G	G	E	Е	G	G
Trichlorofluoromethane		-	=	-	-	-	-	=	U	₹=3	2	=	-	U	U	=	-	3	-	-	-	2	G	#	-	G	-	(-
Trichloropropane	U	Α	-	20	-	100	-	Α	-		<u></u>	220	Α	Α	U	22	2	U	Α	23	4	Α	Α	(1 <u>112</u>	A	U*	0	Α
Triethanolamine	R	U	R	R	R	U	R	R	U	U	R	R	4	R	U	U	-	722	R	25	9	G	G	G	G	G	U	E
Triethylamine	U	U	A	R	R	=	U	Α	R	R	Α	Α	A	Α	С	12	-	Α	X	В	1	G	G	122	-	1923	-	5-5
Trimethylpropane	Ų	=:	R	R	-	-	U	R	R	R	R	120	-		R	R	-	(22)	-	-	-	25	-	100	8	8=8	-	220
Turpentine	U	Α	Α	R	R	U	X	Α	X	U	A	U	A	U	R	U	U	В	Α	Α	-	Е	E	G	G	G	S	G
Vinyl Acetate	U	3#83	U	R	-	U	В	Α	U	U	Α	В	-	Χ	X	=	U	U	Α	В	-	Ε	E	G	E	Е	G	8-8
Vinyl Chloride	U	-	u	-	Α	-	-	Α	U	::-::	В	С	-	U	U	-	-	U	Α	Α	-	В	Α	1966	Α	В	-	В
White Liquor (pulp mill)	Х	U	R	R	R	=	R	R	R	R	R	R	-	R	R	-	-	:-	R	-	+	G	G	S	G	G	+	()—()
White Water (paper mill)	R	В	-		R	=	R	-	R	2 - 2		-		Α	-	-	-	-	A	-	-	Α	Α	-	-	2-7	-	33-0
Xylene	U	Α	U	R	R	U	В	Α	U	U	Α	U	Α	U	U	U	U	U	X	Α	=	G	G	G	E	G	G	G

NOTA: A tabela apresentada deverá ser usada como um guia de referência dos valores nela indicados em virtude da dificuldade na duplicação das condições de trabalho. Por esse motivo deverão ser realizados testes de resistência química nas condições reais de operação de modo a garantir os resultados particulares dos materiais.

Não foram encontrados dados sobre os seguintes produtos químicos importantes para o ambiente:

Acenaphthene*
Acenapthalene*
Acrolein Chrysene*
Anthracene*
Benzidine DDE**
Benzo(a)athracene*
Benzo(g,h,i)perylene*
Benzo(a)pyrene*
Bromophenylphenylether
Butylbenzylphthalate
Chloroethoxymethane
Chloroethylether
Chloroethylvinylether

Chloroisopropylether

Chloromethylether Chlorophenylphenylether Chrysene* DDD** DDE** Dichlorobenzidine Dichlorobromomethane Dichlorophenol Dichlorophenoxyacetic Acid Dichloropropane Dichloropropylene Dieldrin** Dinitrophenol Diphenylhydrazine Endosulfan Endrin**

Fluoranthene*
Fluorene*
Heptachlor**
Hexachlorobenzene
Hexachlorobutadiene
Hexachlorocyclohexane
Indeno(1,2,3-c,d)pyrene*
Isophorone
2-Methylnapthalene
Parachlorometa Cresol
Phenanthrene*
Phenylenepyrene
Pyrene*
Trichlorophenol
Trichlorophenoxyacetic Acid

^{*}Componente de cresta e alcatrão de carvão. À temperatura ambiente e abaixo, estes compostos são sólidos na forma pura.

^{**} Pesticidas

Tabela da Designação das dimensões comuns

Designação das Dimensões Comuns

NPS	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	3	4	5	6	8	10	12	14	16	18	20	24
DN	6	8	10	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400	450	500	600

NPS (Nominal Pipe Size): dimensões segundo ASME em polegadas.

DN (Nominal Diameter): dimensões segundo EN e ISO em milímetros.

Dimensões de Flanges segundo AMSE/ANSI B16.1

Dimensões das Flanges Segundo norma Americana Pipe Flange Dimensions

NÚMERO DE PARAFUSOS E DIÂMTERO DOS FUROS — CLASSE ASME ASME B16.A, B16.5 E B16.4 (EM POLEGADAS)

Dimensão nominal do	125 (Ferro 150	Fundido) ou (Aço)		Fundido) ou (Aço)	60	00	90	00	15	00	25	00
tubo	no.	0	no.	0	no.	0	no.	0	no.	0	no.	0
1	4	0.50	4	0.62	4	0.62	4	0.88	4	0.88	4	0.88
1-1/4	4	0.5 0	4	0.62	4	0.62	4	0.88	4	0.88	4	1.00
1-1/2	4	0.50	4	0.75	4	0.75	4	1.00	4	1.00	4	1.12
2	4	0.62	8	0.62	8	0.62	8	0.88	8	0.88	8	1.00
2-1/2	4	0.62	8	0.75	8	0.75	8	1.00	8	1.00	8	1.12
3	4	0.62	8	0.75	8	0.75	8	0.88	8	1.12	8	1.25
4	8	0.62	8	0.75	8	0.75	8	0.12	8	1.25	8	1.50
5	8	0.75	8	0.75	8	1.00	8	1.25	8	1.50	8	1.75
6	8	0.75	12	0.75	12	1.00	12	1.12	12	1.38	8	2.00
8	8	0.75	12	0.88	12	1.12	12	1.38	12	1.62	12	2.00
10	12	0.88	16	1.00	16	1.25	16	1.38	12	1.88	12	2.50
12	12	0.88	16	1.12	20	1.25	20	1.38	16	2.00	12	2.75
14	12	1.00	20	1.12	20	1.38	20	1.50	16	2.25		
16	16	1.00	20	1.25	20	1.50	20	1.62	16	2.50		
18	16	1.12	24	1.25	20	1.62	20	1.88	16	2.75		
20	20	1.12	24	1.25	24	1.62	20	2.00	16	3.00		
24	20	1.25	24	1.50	24	1.88	20	2.50	16	3.50		
30	28	1.25	28	1.75								
36	32	1.50	32	2.00								
42	36	1.50	36	2.00								
48	44	1.50	40	2.00								

Dimensões de Flanges segundo EN1092-1

EN 1092-1 Flange de Aço Fundido Standard - Pressão Nominal 16 bar

D: 2 4	Espessura do		Flange (mm)		Aj	parafusamento (mr	n)
Diâmetro Nominal mm	tubo mm	Diâmetro exterior	Espessura	Diâmetro do circulo dos parafusos	Número de parafusos	Rosca	Diâmetro dos furos
10	6	90	16	60	4	M12	14
15	6	95	16	65	4	M12	14
20	6,5	105	18	75	4	M12	14
25	7	115	18	85	4	M12	14
32	7	140	18	100	4	M16	18
40	6	90	16	60	4	M12	14
50	6	95	16	65	4	M12	14
65	6,5	105	18	75	4	M12	14
80	7	115	18	85	4	M12	14
100	7	140	18	100	4	M16	18
125	10	250	22	210	8	M16	18
150	11	285	22	240	8	M20	23
175	12	315	24	270	8	M20	23
200	12	340	24	295	12	M20	23
250	14	405	26	355	12	M24	27
300	15	460	28	410	12	M24	27
350	16	520	30	470	16	M24	27
400	18	580	32	525	16	M27	30
500	21	715	36	650	20	M30	33
600	23	840	40	770	20	M33	36
700	24	910	42	840	24	M33	36
800	26	1025	42	950	24	M36	39
900	27	1125	44	1050	28	M36	39
1000	29	1255	46	1170	28	M39	42
1200	32	1485	52	1390	32	M45	48
1400	34	1685	58	1590	36	M45	48
1600	36	1930	64	1820	40	M52	56
1800	39	2130	68	2020	44	M52	56
2000	41	2345	70	2230	48	M56	62
2200	43	2555	74	2440	52	M56	62

EN 1092-1 Flange de Aço Fundido Standard - Pressão Nominal 25 bar

Dia . N. i I	Espessura do		Flange (mm)			Aparafusamento (mm	
Diâmetro Nominal mm	tubo mm	Diâmetro exterior	Espessura	Diâmetro do circulo dos parafusos	Número de parafusos	Rosca	Diâmetro dos furos
10	6	90	16	60	4	M12	14
15	6	95	16	65	4	M12	14
20	6,5	105	18	75	4	M12	14
25	7	115	18	85	4	M12	14
32	7	140	18	100	4	M16	18
40	7,5	150	18	110	4	M16	18
50	8	165	20	125	4	M16	18
65	8,5	185	22	145	8	M16	18
80	9	200	24	160	8	M16	18
100	10	235	24	190	8	M20	23
125	11	270	26	220	8	M24	27
150	12	300	28	250	8	M24	27
175	12	330	28	280	12	M24	27
200	12	360	30	310	12	M24	27
250	14	425	32	370	12	M27	30
300	15	485	34	430	16	M27	30
350	16	555	38	490	16	M30	33
400	18	620	40	550	16	M33	36
500	21	730	44	660	20	M33	36
600	23	845	46	770	20	M36	39
700	24	960	50	875	24	M39	42
800	26	1085	54	990	24	M45	48
900	27	1185	58	1090	28	M45	48
1000	29	1320	62	1210	28	M52	56
1200	32	1530	70	1420	32	M52	56
1400	34	1755	76	1640	36	M56	62
1600	37	1975	84	1860	40	M56	62
1800	40	2195	90	2070	44	M64	70
2000	43	2425	96	2300	48	M64	70

Dimensões de Flanges segundo EN1092-1

EN 1092-1 Flange de Aço Fundido Standard - Pressão Nominal 40 bar

5	Espessura do		Flange (mm)			Aparafusamento (mm)
Diâmetro Nominal mm	tubo mm	Diâmetro exterior	Espessura	Diâmetro do circulo dos parafusos	Número de parafusos	Rosca	Diâmetro dos furos
10	6	90	16	60	4	M12	14
15	6	95	16	65	4	M12	14
20	6,5	105	18	75	4	M12	14
25	7	115	18	85	4	M12	14
32	7	140	18	100	4	M16	18
40	7,5	150	18	110	4	M16	18
50	8	165	20	125	4	M16	18
65	8,5	185	22	145	8	M16	18
80	9	200	24	160	8	M16	18
100	10	235	24	190	8	M20	23
125	11	270	26	220	8	M24	27
150	12	300	28	250	8	M24	27
175	13	350	32	295	12	M27	30
200	14	375	34	320	12	M27	30
250	16	450	38	385	12	M30	33
300	17	515	42	450	16	M30	33
350	19	580	46	510	16	M33	36
400	21	660	50	585	16	M36	39
450	21	685	50	610	20	M36	39
500	21	755	52	670	20	M39	42
600	24	890	60	795	20	M45	48
700	27	995	64	900	24	M45	48
800	30	1140	72	1030	24	M52	56
900	33	1250	76	1140	28	M52	56
1000	36	1360	80	1250	28	M52	56
1200	42	1575	88	1460	32	M56	62
1400	47	1795	98	1680	36	M56	62
1600	54	2025	108	1900	40	M64	70

EN 1092-1 Flange de Aço Fundido Standard - Pressão Nominal 63 bar

Die A N ' I	Espessura do		Flange (mm)			Aparafusamento (mm)
Diâmetro Nominal mm	tubo mm	Diâmetro exterior Espessura		Diâmetro do circulo dos parafusos	Número de parafusos	Rosca	Diâmetro dos furos
10	10	100	20	70	4	M12	14
15	10	105	20	75	4	M12	14
25	10	140	24	100	4	M16	18
32	12	155	24	110	4	M20	23
40	10	170	28	125	4	M20	22
50	10	180	26	135	4	M20	22
65	10	205	26	160	8	M20	22
80	11	215	28	170	8	M20	22
100	12	250	30	200	8	M24	26
125	13	295	34	240	8	M27	30
150	14	345	36	280	8	M30	33
175	15	375	40	310	12	M30	33
200	16	415	42	345	12	M33	36
250	19	470	46	400	12	M33	36
300	21	530	52	460	16	M33	36
350	23	600	56	525	16	M36	39
400	26	670	60	585	16	M39	42
500	31	800	68	705	20	M45	48
600	35	930	76	820	20	M52	56
700	40	1045	84	935	24	M52	56
800	45	1165	92	1050	24	M56	62
900	50	1285	98	1170	28	M56	62
1000	55	1415	108	1290	28	M64	70
1200	64	1665	126	1530	32	M72X6	78

Dimensões de Flanges segundo EN1092-1

 ${\sf EN\,1092\text{-}1}$ Flange de Aço Fundido Standard - Pressão Nominal 100 bar

Die . N . I	Espessura do		Flange (mm)		Aparafusamento (mm)				
Diâmetro Nominal mm	tubo mm	Diâmetro exterior Espessura		Diâmetro do circulo dos parafusos	Número de parafusos	Rosca	Diâmetro dos furos		
10	10	100	20	70	4	M12	14		
15	10	105	20	75	4	M12	14		
25	10	140	24	100	4	M16	18		
32	12	155	24	110	4	M20	23		
40	10	170	28	125	4	M20	22		
50	10	195	30	145	4	M24	26		
65	11	220	34	170	8	M24	26		
80	12	230	36	180	8	M24	26		
100	14	265	40	210	8	M27	30		
125	16	315	40	250	8	M30	33		
150	18	355	44	290	12	M30	33		
175	20	385	48	320	12	M30	33		
200	21	430	52	360	12	M33	36		
250	25	505	60	430	12	M36	39		
300	29	585	68	500	16	M39	42		
350	32	655	74	560	16	M45	48		
400	36	715	78	620	16	M45	48		
500	44	870	94	760	20	M52	56		
600	51	990	104	875	20	M56	62		
700	59	1145	120	1020	24	M64	70		

Classificação IK

Ni veis de Protec a o Contra Impactos Meca nicos

O padrão internacional IEC 62262 (2002) define os níveis de proteção de invólucros e gabinetes contra impactos mecânicos.

Código IK	Energia de Impacto	Resistência contra um impacto de objetos de
00	Sem proteção	Sem especifcação
01	0,150 joules	200 gramas através de uma distância de 7,5 cm
02	0,200 joules	200 gramas através de uma distância de 10 cm
03	0,350 joules	200 gramas através de uma distância de 17,5 cm
04	0,500 joules	200 gramas através de uma distância de 25 cm
05	0,700 joules	200 gramas através de uma distância de 35 cm
06	1,00 joules	500 gramas através de uma distância de 20 cm
07	2,00 joules	500 gramas através de uma distância de 40 cm
08	5,00 joules	1,7 kg através de uma distância de 29,5 cm
09	10,00 joules	5 kg gramas através de uma distância de 20 cm
10	20,00 joules	5 kg gramas através de uma distância de 40 cm

satisfatório e a segurança do equipamento. Não há qualquer entrada de pó na caixa com uma

baixa pressão de 20 mbar.

Grau de Protecção IP

Graus de proteção de acordo com IEC 60 529 (EN 60 529).

6

A identificação do grau de proteção IP é feita através de 2 dígitos de referência:

Grau o	Primeiro dígito de referência: Grau de proteção contra contatos acidentais e corpos estranhos											
Primeiro Digito de Referência	Descrição	Definição										
1	Proteção contra corpos estranhos sólidos com 50 mm de diâmetro ou maiores	A sonda objetiva, esfera com 50 mm de diâmetro, não deve penetrar por completo.										
2	Proteção contra corpos estranhos sólidos com 12,5 mm de diâmetro ou maiores	A sonda objetiva, esfera com 12,5 mm de diâmetro, não deve penetrar por completo ¹⁾ . O corpo de teste articulado deve penetrar até no máx. 80 mm; porém, é preciso que seja mantida distância suficiente.										
3	Proteção contra corpos estranhos sólidos com 2,5 mm de diâmetro ou maiores	A sonda objetiva, esfera com 2,5 mm de diâmetro, não deve penetrar de forma alguma ¹⁾ .										
4	Proteção contra corpos estranhos sólidos com 1,0 mm de diâmetro ou maiores	A sonda objetiva, esfera com 1,0 mm de diâmetro, não deve penetrar de forma alguma ¹⁾ .										
5	Proteção contra pó	A entrada de pó na caixa não é totalmente impedida; porém, o pó não pode entrar na caixa em quantidades que prejudiquem o funcionamento										

	Segundo dígito de referência: Grau de proteção contra água											
Primeiro Digito de Referência	Descrição	Definição										
1	Proteção contra gotejamento	O gotejamento vertical não deve ter efeitos nocivos.										
2	Proteção contra gotejamento no caso de a caixa ter uma inclinação de até 15º	O gotejamento vertical não deve ter efeitos nocivos no caso de a caixa ter um ângulo de inclinação de até 15º em ambos os lados da vertical.										
3	Proteção contra borrifos de água	Água borrifada em um ângulo de até 60° em ambos os lados da vertical não deve ter efeitos nocivos.										
4	Proteção contra respingos de água	A água respingada de qualquer direção contra a caixa não deve ter efeitos nocivos.										

Vedação contra pó

Tabela de perda de cargas em tubulações

Percentagem de perda de carga ao longo de 100 metros de tubulação nova de PVC ou tubos de ferro fundido ou galvanizado (valores em %).

Vazão	PVC	F ₀ F ₀	PVC	F ₀ F ₀	PVC	F°F°	PVC	F°F°	PVC	F ₀ F ₀	PVC	F ₀ F ₀	PVC	FºFº	PVC	F°F°	PVC	FºFº	Vazão
m3/h	3/	′4 "	1		11	/4"	1 1	/2"	2	·-	2 1	./2"	3	3"	4	! "	5	5*	m3/h
0,5	1,5	1,3	0,5	0,4	0,1	0,1	0,1	0,1			_	-							0,5
1,0	4,9	4,8	1,6	1,6	0,4	0,4	0,2	0,2	0,1	0,1									1,0
1,5	10,0	10,1	3,3	3,4	0,9	0,9	0,5	0,4	0,1	0,1									1,5
2.0	16.5	17.2	5.4	5.8	1.4	1.5	0.8	0.7	0.2	0.2	0.1	0.1							2.0
2,5	24,4	26,1	8,0	8,8	2,1	2,3	1,2	1,1	0,4	0,3	0,1	0,1							2,5
3,0	33,6	36,5	11,0	12,3	2,9	3,2	1,6	1,5	0,5	0,5	0,1	0,1	0,1	0,1					3,0
3.5	44.0 55,6	48.6	14.4 18,2	16.4 21,0	3.8	4.2	2.1	2.0	0.6 0,8	0.6 0,8	0.2	0.2	0.1	0.1					3.5 4,0
4,0 4,5	68,3	62,2 77,3	22,3	26,1	4,8 6,0	5,4 6,7	2,7	2,6 3,2	1,0	1,0	0,2	0,2	0,1	0,1					4,0
5,0	82,2	94,0	26,8	31,7	7,2	8,1	4,0	3,2	1,2	1,2	0,3	0,3	0,1	0,2					5,0
5,5	97,1	34,0	31,7	37,8	8,5	9,7	4,7	4,6	1,4	1,4	0,4	0,4	0,2	0,2		0,1			5,5
6,0	0.,1		36,9	44,4	9,9	11,4	5,4	5,4	1,6	1,7	0,5	0,5	0,2	0,2	0,1	0,1			6,0
6,5			42,5	51,5	11,3	13,2	6,3	6,3	1.9	2,0	0,5	0,5	0,2	0,2	0,1	0,1			6,5
7.0			48.4	59.1	12.9	15.2	7.1	7.2	2.1	2.3	0.6	0.6	0.3	0.3	0.1	0.1			7.0
7,5			54,6	67,1	14,6	17,2	8,0	8,2	2,4	2,6	0,7	0,7	0,3	0,3	0,1	0,1			7,5
8,0			61,1	75,6	16,3	19,4	9,0	9,2	2,7	2,9	0,8	0,8	0,3	0,4	0,1	0,1			8,0
8,5			67,9	84,6	18,1	21,7	10,0	10,3	3,0	3,2	0,8	0,9	0,4	0,4	0,1	0,1			8,5
9.0			75.1	94.0	20.0	24.1	11.1	11.5	3.3	3.6	0.9	1.0	0.4	0.5	0.1	0.1			9.0
9,5			82,5		22,0	26,7	12,2	12,7	3,6	4,0	1,0	1,1	0,4	0,5	0,1	0,1			9,5
10			90,3		24,1	29,3	13,3	13,9	4,0	4,4	1,1	1,2	0,5	0,5	0,1	0,2	0.4	0,1	10
12	_				33,1	41,1	18,3	19,5	5,4	6,1	1,5	1,7	0,7	0,8	0,2	0,2	0,1	0,1	12
14 16	_				43,4 54,8	54,6 69,9	24,0 30,3	25,9 33,2	7,1 9,0	8,1 10,4	2,0 2,5	2,3 2,9	0,9	1,0	0,2	0,3	0,1	0,1	14 16
18					67,4	87,0	37,2	41,3	11,1	12,9	3,1	3,6	1,1 1,4	1,3 1,6	0,3	0,4	0,1	0,1	18
20					81.0	01,0	44.8	50.2	13.3	15.7	3.7	4.4	1.6	2.0	0.5	0.5	0.2	0.2	20
25					81.0		66,2	75,8	19,7	23,7	5,5	6,6	2,4	3,0	0,7	0,8	0,2	0,3	25
30							91,1		27,1	33,3	7,6	9,3	3,3	4,2	0,9	1,2	0,3	0,4	30
35									35,5	44,3	10,0	12,4	4,4	5,6	1,2	1,5	0,4	0,6	35
40									44,8	56,7	12,6	15,8	5,5	7,1	1,5	2,0	0,5	0,7	40
45									55,1	70,4	15,5	19,7	6,8	8,9	1,9	2,4	0,7	0,9	45
50									66,2	85,6	18,6	23,9	8,1	10,8	2,3	3,0	0,8	1,1	50
55									78,2		22,0	28,5	9,6	12,9	2,7	3,5	0,9	1,3	55
60									91,1		25,6	33,5	11,2	15,1	3,1	4,2	1,1	1,5	60
65											29.5	38.9	12.9	17.5	3.6	4.8	1.3	1.7	<u>65</u>
70											33,5	44,6	14,6	20,1	4,1	5,5	1,4	2,0	70
75 80	_										37,8	50,7	16,5	22,8	4,6	6,3	1,6	2,3	75 80
85											42,4 47,1	57,1 63,8	18,5 20,6	25,7 28,8	5,1 5,7	7,1 7,9	1,8 2,0	2,6 2,9	85
90											52,1	71,0	22,7	32,0	6,3	8,8	2,2	3,2	90
95											57,2	78,4	25.0	35,3	6,9	9,7	2,5	3,5	95
100											62,6	86,2	27,3	38,9	7,6	10,7	2,7	3,9	100
120											86,1	00,0	37,6	54,5	10,4	15,0	3,7	5,4	120
150													55.6	82,3	15.4	22.7	5.5	8,2	150
200													91,9	0210	25,5	38,6	9,0	14,0	200
250															37,7	58,3	13,3	21,1	250
300															51.8	81.7	18.3	29.6	300
350															67,9		24,0	39,4	350
400															85,7		30.3	50.4	400

Observações:

- 1. Cálculos baseados na equação de Flamant para tubos de PVC e na equação de Hazen-Williams para tubos de ferro fundido ou galvanizado. Os valores apresentados são resultantes de cálculos baseados nas médias dos diâmetros internos usualmente comercializados;
- 2. Em se tratando de tubos galvanizados ou ferro fundido, deve-se acrescentar 3% aos valores acima para cada ano de uso da tubulação;
- 3. Considerar que a pressão nominal dos tubos de PVC classe 15 é de 75 m c.a. Conforme aplicação, para pressões acima destes valores, recomenda-se o uso de tubos de ferro fundido ou galvanizados;
- 4. Evite o uso dos valores abaixo da linha grifada para não ocasionar excesso de perdas de carga, principalmente na tubulação de sucção, onde a velocidade máxima do líquido deve ser inferior a 2 m/s;
- 5. Para tubulação de irrigação PN 40 (DN 35, DN 50, DN 75, DN 100, DN 125, DN 150), PN 80 (DN 50, DN 75, DN 100), PN 125 (DN 100, DN 150, DN 200, DN 250, DN 300) e PN 60 (DN 250, DN 300) consultar respectiva tabela de perda de carga do fabricante.

Capacidade de condução de vapor em tubagens

Valores apresentados para a capacidade de condução de vapor em kg/h

Considerou-se a velocidade na tubagem = 30 m/s

PRESSÃO	MANOMÉTRICA						DIÂM	METRO NA	TUBAGEM	DE VAPOR					
psig	kgf/cm2	1/2"	3/4"	1"	1.1/4"	1.1/2"	2"	3"	4"	5"	6"	8"	10"	12"	14"
0	0	13	22	36	63	85	140	308	531	835	1206	2086	3289	4668	5643
5	0,352	17	29	47	82	112	184	405	699	1098	1586	2744	4326	6139	7421
10	0,703	20	36	59	102	138	227	501	864	1356	1960	3391	5346	7586	9171
15	1,05	24	43	70	121	164	270	595	1026	1612	2329	4030	6353	9015	10898
20	1,41	28	50	81	140	190	313	689	1187	1865	2695	4662	7349	10430	12608
25	1,76	32	57	91	159	215	355	781	1347	2116	3057	5289	8338	11833	14304
30	2,11	36	63	102	177	241	397	873	1506	2365	3417	5912	9319	13225	15987
35	2,46	39	70	113	196	266	438	964	1663	2612	3774	6530	10294	14609	17660
40	2,81	43	76	123	214	291	479	1055	182 0	2858	4130	7145	11264	15985	19324
45	3,16	47	83	134	233	316	520	1146	1976	3103	4484	7758	12229	17355	20979
50	3,52	51	89	145	251	341	561	1236	2131	3347	4836	8367	13190	18719	22628
55	3,87	54	96	155	269	365	602	1326	2286	3590	5187	8975	14148	20078	24271
60	4,22	58	102	165	287	390	643	1415	2440	3832	5537	9580	15102	21432	25908
65	4,57	62	109	176	305	415	683	1504	2594	4074	5886	10184	16054	22782	27540
70	4,92	65	115	186	323	439	724	1593	2747	4314	6234	10786	17002	24129	29168
75	5,27	69	122	197	341	464	764	1682	2900	4554	6581	11386	17949	25472	30792
80	5,62	72	128	207	359	488	804	1770	3053	4794	6927	11985	18893	26812	32412
85	5,98	76	135	217	377	512	844	1858	3205	5033	7272	12583	19836	28150	34029
90	6,33	80	141	228	395	537	884	1947	3357	5272	7617	13180	20777	29485	35643
95	6,68	83	147	238	413	561	924	2035	3509	5510	7962	13776	21716	30818	37255
100	7,03	87	154	248	431	585	964	2122	3660	5748	8306	14371	22654	32149	38864
110	7,73	94	166	269	467	633	1044	2298	3963	6223	8992	15558	24526	34806	42076
120	8,44	101	179	289	502	682	1123	2473	4265	6697	9677	16743	26394	37457	45280
130	9,14	108	192	310	538	730	1203	2648	4566	7171	10361	17926	28259	40103	48479
140	9,84	116	204	330	573	778	1282	2822	4867	7643	11043	19107	30121	42746	51674
150	10,5	123	217	350	608	826	1361	2996	5167	8115	11725	20287	31981	45386	54865
160	11,2	130	230	371	644	874	1440	3170	5468	8587	12407	21466	33839	48023	58053
170	12,0	137	242	391	679	922	1519	3344	5768	9058	13088	22644	35697	50659	61239
180	12,7	144	255	411	714	970	1598	3518	6068	9529	13768	23822	37554	53294	64424
190	13,4	151	267	432	750	1018	1677	3692	6368	10000	14449	25000	39410	55928	67609
200	14,1	158	280	452	785	1066	1756	3866	6668	10471	15130	26177	41266	58563	70794
250	17,6	194	343	554	962	1306	2151	4737	8169	12829	18536	32071	50557	71748	86733
300	21,1	230	406	656	1139	1547	2548	5611	9676	15195	21955	37987	59883	84983	102732
350	24,6	266	470	759	1317	1789	2947	6489	11191	17575	25394	43937	69263	98294	118824
400	28,1	302	534	862	1497	2033	3350	7375	12718	19973	2 8858	49932	78712	111704	135034
450	31,6	338	599	967	1678	2279	3755	8268	14258	22391	32353	55977	88243	125229	151383
500	35,2	375	664	1072	1861	2528	4165	9169	15812	24833	35880	62081	97864	138883	167889

 $Q = 84.960 \ x \ Y \ x \ d^2 \quad | \quad Q = Vazão \ de \ vapor \ \left(kg/h\right) \quad | \quad Y = Peso \ específico \ do \ vapor \ \left(kg/m^3\right) \quad | \quad d = Diâmetro \ interno \ da \ tubulação \ \left(m\right)$

Cálculo da dilatação de uma tubagem

Tipo de Material da Tubagem	Dilatação em milímetros por metro e por grau Celcius (°C) Considerar a temperaturas até ao valor indicad o										
npo de Material da Tubagerii	100°C	200°C	300°C	400°C	500°C	600°C	700°C				
Aço Carbono (0,1 -0,2% Carbono)	0.0117	0.0124	0.0129	0.0135	0.0142	0.0144	0.0145				
Aço Inox (18-8 Cr Ni)	0.0167	0.0171	0.0176	0.0181	0.0185	0.0187	0.019				
Cobre	0.0165	0.0169	0.0172	0.0178	0.0181	0.0185	0.0189				

Exemplo: Calculo da dilatação de uma tubagem de aço carbono considerando uma temperatura diferencial no fluido de 150° C e um comprimento de 30m => Dilatação da tubagem = 0,0124 x 30 x 150 = 55,8 mm.

Perda de vapor nas tubulações sem isolamento térmico

Valores apresentados por metro linear e por hora (em kg de vapor)

PRESSÃO MA	ANOMÉTRICA	DIÂMETRO NA TUBAGEM DE VAPOR										
psig	kg/cm²g	1"	2"	2 1/2"	3"	4"	5"	6"				
75	5,27	5,27	0,400	0,400	0,600	0,600	1,000	1,000				
90	6,33	6,33	0,430	0,430	0,640	0,640	1,080	1,080				
105	7,38	7,38	0,460	0,460	0,690	0,690	1,150	1,150				
120	8,44	8,44	0,490	0,490	0,732	0,732	1,220	1,220				
135	9,49	9,49	0,512	0,512	0,770	0,770	1,260	1,260				
150	10,5	10,5	0,540	0,540	0,820	0,820	1,340	1,340				
180	12,7	12,7	0,580	0,580	0,870	0,870	1,450	1,450				
210	14,8	14,8	0,620	0,620	0,940	0,940	1,560	1,560				
300	21,1	21,1	0,730	0,730	1,090	1,090	1,820	1,820				

Perda de Calor por radiação (kcal/hm)

Cálculos efetuados para tubagens

Diâmetro Externo co tubo		Temperaturas (°C)											
		50			100			150			200		
		6	Com isolamento		C il	Com isolamento		C:I	Com isolamento		C :l	Com isolamento	
pol	mm	- Sem isol.	Espessura	Perda	- Sem isol.	Espessura	Perda	- Sem isol	Espessura	Perda	- Sem isol	Espessura	Perda
1/2	21	27	25	4	78	25	13	142	40	18	220	40	28
3/4	27	34	25	5	99	25	15	180	40	21	280	40	32
1	32	41	25	6	12	25	17	223	40	24	347	40	36
1.1/4	42	44	25	7	130	25	19	260	40	27	420	50	36
1.1/2	48	50	40	6	155	40	16	290	40	30	470	63,5	35
2	60	59	40	7	180	40	19	340	40	34	560	63,5	39
2.1/2	73	74	40	8	220	40	22	430	50	34	700	63,5	45
3	89	87	40	8	250	40	25	500	50	38	800	75	46
3.1/2	102	97	40	9	285	40	27	550	50	42	900	75	50
4	114	106	40	10	320	40	29	600	63,5	39	1000	75	53
5	140	128	50	10	400	50	29	750	63,5	45	1230	75	61
6	168	150	50	12	460	50	34	900	63,5	51	1450	75	70
8	219	187	50	14	600	50	42	1150	63,5	6 3	1900	100	70
10	273	219	50	17	750	50	50	1400	75	66	2300	100	81

ANÁLISE DE PURGADORES

A ISMA encontra-se dotada do mais avançado equipamento para a análise do estado de funcionamento dos purgadores de condensados utilizados em linhas de vapor industrial.

O teste efectuado baseia-se na leitura do espectro específico de ultra-sons emitido por cada tipo de purgador em funcionamento, que não depende do fabricante o que aumenta a versatilidade da sua utilização em todas as instalações, em conjugação com a análise da medição de temperatura da superfície do equipamento.

A criação de base de dados com todas as informações relevantes de cada purgador instalado num determinado sistema, registo de comentários e respectivas curvas de medição dos testes efectuados, permite uma análise global e detalhada de toda a instalação dos purgadores possibilitando a emissão de relatórios de acompanhamento com a listagem dos equipamentos testados, notificação dos purgadores defeituosos e respectivas perdas de vapor que estão a ocorrer.

A análise periódica dos purgadores tem evidentes vantagens financeiras pela deteção e eliminação das perdas de vapor e na redução dos tempos de processo pela optimização térmica conseguida com a utilização do vapor nas condições ideais.

Notas:	

•	•